www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFolge und Permutation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Folge und Permutation
Folge und Permutation < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge und Permutation: Beweisidee gesucht
Status: (Frage) beantwortet Status 
Datum: 18:18 Mi 06.11.2013
Autor: clemenum

Aufgabe
Gegeben sei eine beliebige, konvergente Folge [mm] $(x_n)_{n=1}^{\infty}$ [/mm] in einem normierten Raum, mit Grenzwert [mm] $x_0$. [/mm] Man zeige, dass dann für jede Permutation [mm] $\pi$ [/mm] auch die neue Folge konvergent ist und zwar zum gleichen Grenzwert.

Sei [mm] $\pi: \mathbb{N} \to \mathbb{N}$ [/mm] die Permutation von [mm] $\mathbb{N}$ [/mm] in sich.
Nun es gilt doch offensichtlich: [mm] $\{x_n:n\in \mathbb{N}\} [/mm] = [mm] \{(x_{\pi(n)} )_{n=1}^{\infty} :n\in \mathbb{N} \},$ [/mm] also wird wohl nicht nur das Konvergenzverhalten übereinstimmen sondern auch der Grenzwert.

Frage: Wie könnte ich meinen erklärten Prozess formaler aufschreiben?
Zu zeigen habe ich ja $|| [mm] x_{\pi(n)} [/mm] - [mm] x_0 ||<\epsilon$ [/mm] unter der Voraussetzung [mm] $||x_n [/mm] - [mm] x_0|| [/mm] < [mm] \epsilon$ [/mm]  
Knn mir da jemand einen Tipp geben?

        
Bezug
Folge und Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mi 06.11.2013
Autor: reverend

Hallo clemenum,

nur so als Idee: reicht nicht die Definition des Grenzwerts einer Folge - und zwar die mit dem schwerwiegenden Begriff "fast alle"?
Dann wäre allerdings gar nichts mehr zu zeigen, was ja auch blöd ist. ;-)

Ich lasse die Frage mal weiter offen.

Grüße
reverend

Bezug
        
Bezug
Folge und Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mi 06.11.2013
Autor: fred97

Zu [mm] \varepsilon [/mm] > 0 gibt es ein N [mm] \in \InN [/mm] mit

(*) [mm] ||x_n-x_0||< \varepsilon [/mm]  für n > N.

Wie unser Referent sagte, ist zu zeigen:

$ || [mm] x_{\pi(n)} [/mm] - [mm] x_0 ||<\varepsilon [/mm] $  für fast alle n.

Nimm mal an, das wäre nicht so. Dann hätten wir:


$ || [mm] x_{\pi(n)} [/mm] - [mm] x_0 [/mm] || [mm] \ge \varepsilon [/mm] $  für unendlich viele n.

Da $ [mm] \pi: \mathbb{N} \to \mathbb{N} [/mm] $ eine Bijektion ist, widerspricht das aber gewaltig dem, was in (*) steht.

FRED

Bezug
                
Bezug
Folge und Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 Mi 06.11.2013
Autor: clemenum

Vielen Dank euch beiden, Reverend und Fred, ihr habt mir das Verständnis erweitert! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]