www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFolge von unabh. Ereignissen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Folge von unabh. Ereignissen
Folge von unabh. Ereignissen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge von unabh. Ereignissen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:54 Fr 17.12.2010
Autor: Lyrn

Aufgabe
Sei [mm]\Omega = [0,10][/mm] mit der Gleichverteilung. Geben Sie eine Folge [mm] A_1, A_2,... [/mm] von paarweise verschiedenen unabhängigen Ereignissen an.

Guten Morgen!
Ich brauche dringend Hilfe bzw. eine Erklärung wie ich an die Aufgabe herangehen soll.
Bisher hab ich das so verstanden, dass ich eine Folge angeben soll, so dass für beliebige [mm]i,j[/mm] mit [mm]i \not= j[/mm] gilt:
[mm]P(A_i \cap A_j)=P(A_i)*P(A_j)[/mm].

Ich habe jedoch keine Ahnung wie ich jetzt vorgehen soll.
Kann mir vielleicht wer eine Hilfestellung geben?

lg Lyrn

        
Bezug
Folge von unabh. Ereignissen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:54 Fr 17.12.2010
Autor: gfm


> Sei [mm]\Omega = [0,10][/mm] mit der Gleichverteilung. Geben Sie

Soll das eine stetige Gleichverteilung sein?
Soll auch noch [mm] 1>P(A_j)>0 [/mm] gelten? Wenn nicht, gibt es triviale Beispiele (alle [mm] A_j [/mm] abzählbar oder [mm] \Omega [/mm] vermindert um abzählbare Mengen).

> eine Folge [mm]A_1, A_2,...[/mm] von paarweise verschiedenen
> unabhängigen Ereignissen an.
>  Bisher hab ich das so verstanden, dass ich eine Folge
> angeben soll, so dass für beliebige [mm]i,j[/mm] mit [mm]i \not= j[/mm]
> gilt:
>  [mm]P(A_i \cap A_j)=P(A_i)*P(A_j)[/mm].

Ich auch.

LG

gfm

Bezug
                
Bezug
Folge von unabh. Ereignissen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 So 19.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Folge von unabh. Ereignissen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 So 19.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]