www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionFolgeglieder alle positiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Folgeglieder alle positiv
Folgeglieder alle positiv < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgeglieder alle positiv: Monotonie / Folgen
Status: (Frage) beantwortet Status 
Datum: 17:00 Mo 26.05.2008
Autor: mdemes

Aufgabe
[Dateianhang nicht öffentlich]

Hey!

Ich sitze gerade an dieser Aufgabe und habe überhaupt keinen Plan :( - Hatten im Tutorium eine Aufgabe gerechnet in der wir Grenzen gegeben hatten und kann überhaupt keinen Zusammenhang erknnen....

Zu i) ich meine es ist offensichtlich, dass die Funktion gegen 0 konvergiert. Wäre dies schon ein Beweis

2. Idee: Die Funktion Explizit notieren und zeigen, dass diese gegen 0 konvergiert.

zu ii) Monotonie. Mit dem Zwischenwertsatz.

Habt ihr eine Idee für mich?

Danke!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Folgeglieder alle positiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Mo 26.05.2008
Autor: fred97

Die Folge (-1/n) konvergiert gegen Null, die Folgenglieder sind aber negativ.

Zu Deiner Aufgabe: benutze das Monotoniekriterium für Folgen. Zeige also:

   die Folge ist beschränkt und monoton.

Dann ist sie konvergent.

Nennen wir den Grenzwert x.
Dann gilt x=x/(x+2). Wäre x ungleich Null, so würde folgen: x=-1. Das geht aber nicht, da alle Folgenglieder positiv sind. Also ist x=0.


FRED

Bezug
        
Bezug
Folgeglieder alle positiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Mo 26.05.2008
Autor: abakus


> [Dateianhang nicht öffentlich]
>  Hey!
>
> Ich sitze gerade an dieser Aufgabe und habe überhaupt
> keinen Plan :( - Hatten im Tutorium eine Aufgabe gerechnet
> in der wir Grenzen gegeben hatten und kann überhaupt keinen
> Zusammenhang erknnen....
>  
> Zu i) ich meine es ist offensichtlich, dass die Funktion
> gegen 0 konvergiert. Wäre dies schon ein Beweis
>  
> 2. Idee: Die Funktion Explizit notieren und zeigen, dass
> diese gegen 0 konvergiert.
>  
> zu ii) Monotonie. Mit dem Zwischenwertsatz.
>  
> Habt ihr eine Idee für mich?

Hallo,
bei ii) würde ich den Term [mm] x_{n+1}-x_n [/mm] bilden und zeigen, dass dieser negativ ist (vorher muss gezeigt sein, dass alle Glieder positiv sind. Das ist aber nur ein Mini-Induktionsbeweis.)

Ansonsten kann man ebenfalls induktiv beweisen, dass jedes Folgenglied die Form [mm] a_n=\bruch{1}{2^n-1} [/mm] besitzt, und die ist offensichtlich monoton fallend.
Viele Grüße
Abakus


>
> Danke!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]