www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Grenzwertberechnung
Status: (Frage) beantwortet Status 
Datum: 09:54 Mi 18.01.2006
Autor: bluewave1999

Aufgabe
Betrachtet wird die Folge [mm] $(a_n)$ [/mm] mit [mm] $a_n=\wurzel{n}-\wurzel{n-1}$ [/mm] und [mm] $n=1,2,3,\ldots$ [/mm]
Besitzt die Folge [mm] $n\to\infty$ [/mm] einen Grenzwert?

Ich habe grosse Probleme bei der Grenwertberechnung und wie komme ich auf die Werte?

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Mi 18.01.2006
Autor: Julius

Hallo bluewave!

Erweitere mal mit [mm] $\sqrt{n} [/mm] + [mm] \sqrt{n-1}$ [/mm] und wende im Zähler die 3. Binomische Formel an. Dann siehst du es sofort...

Liebe Grüße
Julius

Bezug
                
Bezug
Folgen: Grenzwertberechnung
Status: (Frage) beantwortet Status 
Datum: 11:18 Mi 18.01.2006
Autor: bluewave1999

Aufgabe
  Betrachtet wird die Folge $ [mm] (a_n) [/mm] $ mit $ [mm] a_n=\wurzel{n}-\wurzel{n-1} [/mm] $ und $ [mm] n=1,2,3,\ldots [/mm] $
Besitzt die Folge $ [mm] n\to\infty [/mm] $ einen Grenzwert?

Ich habe die Formel mit [mm] \wurzel{n}+\wurzel{n-1} [/mm] erweitert und habe n-1 rausbekommen. Andere Frage wendet man dieses Verfahren immer an in dem man den Wert erweitert?

Bezug
                        
Bezug
Folgen: Erweitern nicht multiplizieren
Status: (Antwort) fertig Status 
Datum: 14:56 Mi 18.01.2006
Autor: Roadrunner

Hallo bluewave!


> Ich habe die Formel mit [mm]\wurzel{n}+\wurzel{n-1}[/mm] erweitert
> und habe n-1 rausbekommen.

Das ist aber nur die halbe Wahrheit. Wenn du erweiterst (und nicht nur multiplizierst: damit veränderst Du ja den Wert des Terms), musst du nun einen Bruch (mit Zähler und Nenner) erhalten:

[mm] $\wurzel{n}-\wurzel{n-1} [/mm] \ = \ [mm] \bruch{ \left(\wurzel{n}-\wurzel{n-1}\right)*\left(\wurzel{n}+\wurzel{n-1}\right)}{\wurzel{n}+\wurzel{n-1}} [/mm] \ = \ [mm] \bruch{n-(n-1)}{\wurzel{n}+\wurzel{n-1}} [/mm] \ = \ [mm] \bruch{1}{\wurzel{n}+\wurzel{n-1}}$ [/mm]

Und nun die Grenzwertbetrachtung für [mm] $n\rightarrow\infty$ [/mm] ...


> Andere Frage wendet man dieses
> Verfahren immer an in dem man den Wert erweitert?

Nein, immer klappt das garantiert nicht. Das erfordert etwas Übung, um derartige Aufgaben sofort zu erkennen. Aber solche Summen oder Differenzen mit Wurzeln sollte man auf jeden Fall mit dieser Methode mal zu Leibe Rücken!


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]