www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Folgen
Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Aufgaben
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:47 Mo 17.04.2006
Autor: Aeryn

Aufgabe 1
Gegeben ist die Folge [mm] (a_{n}) \infty_{n=0}, [/mm] wobei [mm] a_{n}= 7\bruch{3}{4}^{n}. [/mm]
a) ist die folge [mm] (a_{n}) \infty_{n=0} [/mm] monoton wachsend, monoton fallend, geometrisch, arithmetisch?
b) Berechnen Sie [mm] \summe 20_{n=0} a_{n} [/mm]  und [mm] \summe \infty_{n=0} a_{n}. [/mm]
c) Ist [mm] (a_{n}*a_{n+1}) \infty_{n=0} [/mm] eine geometrische Folge? (Begruendung)

Aufgabe 2
Gegeben ist die Folge [mm] (a_{n}) \infty_{n=0}, [/mm] wobei [mm] a_{n}= [/mm] 5n+2-n(n-1)(n-2).
a) ist die folge [mm] (a_{n}) \infty_{n=0} [/mm] arithmetisch?
b) Berechnen Sie [mm] \summe 249_{n=0} [/mm] (5n+2).
c) Ist [mm] (a_{n})\infty_{n=0} [/mm] monoton wachsend, monoton fallend oder keines von beiden? (Begruendung)

Servus!
Sogar an einem Ostermontag hat man zu lernen und Aufgaben zu machen ;), naja c'est la vie!
Ich glaub ich brauch sowas wie "Folgen und Reihen für Dummies", denn kapieren tu ich diese mathematische Hieroglyphen nicht!
Lg Aeryn.

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 17.04.2006
Autor: homme

Hallo,

ich denke, dass du mittels Induktion nachweisen kannst, ob diese Folge monoton fallend oder monoton steigend ist.
Die Induktion ist ein mathematisches Beweisverfahren, wo man von einem anschaulichen Fall auf das unendliche schließt.
Also man ermittelt die Werte für a(1) und a(2) und weißt dann nach dass für a(n+1) und a(n+2) dasselbe gilt.
Für den Rest deiner Aufgaben kann ich dir leider auch nicht weiterhelfen.

Bezug
        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 17.04.2006
Autor: Walde

Hi aeryn,

dir fehlen glaube ich sämtliche Grundlagen (ist nicht böse gemeint), deshalb habe ich dir mal ein paar Links rausgesucht, die du gründlich studieren solltest. Natürlich sollten alle Informationen auch in deinem Vorlesungsskript (wenn ihr eins habt) zu finden sein.


[]Summenzeichen

[]arithmetische Folge

[]geometrische Folge

[]Monotonie

[]geometrische Reihe


Für 2. b noch fogender Tipp  [mm] \summe_{i=1}^{n}i=\bruch{n}{2}(n+1) [/mm]

L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]