Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) für Interessierte | Datum: | 16:15 Fr 07.12.2007 | Autor: | side |
Aufgabe | Sei [mm] x\in\IR, x\ge0. [/mm] Zeige, dass es eine eindeutige Folge [mm] (a_n)_{n\ge0} [/mm] gibt, mit:
(i) [mm] a_0 \in \IN, a_n \in \{0,1,2,...,9\} [/mm] für [mm] n\in\IN
[/mm]
(ii) für alle [mm] n\in\IN [/mm] gilt [mm] 0\le x-\summe_{k=0}^{n}\bruch{a_k}{10^k}<\bruch{1}{10^n} [/mm] |
Als Ansatz habe ich schon die Hilfe bekommen, dass man induktiv wählen soll:
[mm] a_0= \left|\_x\_\right|, a_1= \left|\_10(x-a_0)\_\right|, a_2=\left|\_10^2(x-a_0-\bruch{a_1}{10}\_\right| [/mm] , ..., [mm] a_n=\left|\_10^n(x-a_0-\bruch{a_1}{10}-...-\bruch{a_{n-1}}{10^{n-1}}\_\right| [/mm] ,...
Dabei sollen die etwas missraten Symbole [mm] "\left|\_" die Gaußklammern darstellen.
Weiter soll man zeigen, dass x=\summe_{k=0}^{\infty}\bruch{a_k}{10^k} . Angeblich soll man dann schreiben dürfen: x= a_0,a_1a_2a_3.... Das verstehe ich nicht so ganz.
[/mm]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:39 Mo 10.12.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|