www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 07.12.2010
Autor: Schneefrau1984

Aufgabe
Einer Folge [mm] (a_n) [/mm] in [mm] \IC [/mm] ordne man die neue Folge
[mm] s_n:= [/mm] 1/n [mm] \summe_{k=1}^{n} a_k, [/mm] n [mm] \in \IN [/mm] zu.
Zeigen Sie: Aus [mm] a_n \to [/mm] a folgt [mm] s_n \to [/mm] a.

Hallo,
kann mir jemand helfen? Hab keine Idee wie ich hier anfangen soll.
Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Di 07.12.2010
Autor: rainerS

Hallo!

Erstmal herzlich [willkommenvh]

> Einer Folge [mm](a_n)[/mm] in [mm]\IC[/mm] ordne man die neue Folge
>  [mm]s_n:= 1/n \summe_{k=1}^{n} a_k,[/mm] [mm]n \in \IN[/mm] zu.
> Zeigen Sie: Aus [mm]a_n \to a[/mm] folgt [mm]s_n \to a[/mm].
>  Hallo,
>  kann mir jemand helfen? Hab keine Idee wie ich hier
> anfangen soll.

Schreib dir erstmal hin, was die Voraussetzung bedeutet: [mm]a_n \to a[/mm] heisst, dass es zu jedem [mm] $\varepsilon [/mm] >0$ ein $N>0$ gibt, sodass

(*) [mm] |a_n-a| < \varepsilon [/mm] für alle $n>N$ .

Zeigen sollst du, dass [mm]s_n \to a[/mm], also dass es zu jedem [mm] $\varepsilon [/mm] >0$ ein $M>0$ gibt, sodass

(**) [mm] |s_n-a| < \varepsilon [/mm] für alle $n>M$ .

Ich habe ganz bewusst zwischen N und M unterschieden, da wir im Moment noch gar nicht wissen, wie die beiden Zahlen miteinander zusammenhängen.

Fangen wir mal mit (**) an: wir wollen [mm] |s_n-a| < \varepsilon [/mm] herausbekommen, also zeigen dass

[mm] \varepsilon > |s_n-a| = \left| \bruch{1}{n} \left(\summe_{k=1}^n a_k\right)-a\right| = \left| \bruch{1}{n} \left(\summe_{k=1}^n a_k-n*a\right) \right| = \bruch{1}{n} \left| \summe_{k=1}^n a_k-n*a\right| = \bruch{1}{n} \left|\summe_{k=1}^n (a_k -a ) \right| [/mm] .

Hilft dir das weiter?

(Tipp: du kannst nicht einfach [mm] $|a_n-a| [/mm] < [mm] \varepsilon$ [/mm] einsetzen, weil das erst ab $n>N$ gilt.)

Viele Grüße
   Rainer

Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 07.12.2010
Autor: Schneefrau1984

Hallo Rainer,
vielen Dank.
Aber irgendwie steh ich grad bissel auf dem Schlauch...

Bezug
                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Di 07.12.2010
Autor: rainerS

Hallo!

> Hallo Rainer,
>  vielen Dank.
>  Aber irgendwie steh ich grad bissel auf dem Schlauch...

Wo hängt's denn?

Versuche die Summe in zwei Teile zu zerlegen: ein Teil, in dem du direkt [mm] $|a_k-a|<\varepsilon$ [/mm] einsetzen kannst und einen zweiten, der für genügend große n beliebig klein wird.

Viele Grüße
   Rainer

Bezug
                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 08.12.2010
Autor: Schneefrau1984

Hallo Rainer,
ich weiß auch nicht. Konnte an der entsprechenden Vorlesung dazu nicht teilnehmen und kann mit dem Skript wenig anfangen. Könntest du mir die Aufgabe komplett erklären? Das wäre wirklich super.
Danke im Voraus.

Bezug
                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mi 08.12.2010
Autor: leduart

Hallo
Du musst schon sagen, was du noch kannst und was nicht. eine gesamte Vorlesungsreihe ersetzen können wir nicht. im netz und in büchern gibt es viele Konvergenzbeweise, arbeit mal einige durch, und versuchs dann noch mal. eine Endliche summe bis zu einem festen k summiert ergibt ne feste zahl z z/n geht immer gegen 0 egal wie groß z ist, wenn es ne feste zahl ist.
Den rest hat  rauner fast schon fertig aufgeschrieben.
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]