www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen / Mengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Folgen / Mengenlehre
Folgen / Mengenlehre < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen / Mengenlehre: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 11:37 Di 09.11.2010
Autor: xcase

Aufgabe
Finden Sie
abgeschlossene Teilmengen [mm] (A_{n})_{n\varepsilon\IN} [/mm] von [mm] \IR^{2}, [/mm] so dass [mm] \bigcup_{n\varepsilon\IN} A_{n} \not\varepsilon (\emptyset, \IR^{2}) [/mm] offen ist.

Hallo,ich habe mir das erstmal versucht mit Mengen vorzustellen (z.b. Kreise) die abgeschlossen waren (sprich alle ihre Randpunkte enthalten). Wenn man aber abgeschlossene Mengen vereinigt, dann sind die Mengen ja noch immer abgeschlossen.
Mit Folgen habe ich mir auch versucht das vorzustellen. Wenn ich z.b. die Folge [mm] \bruch{1}{n} [/mm] habe und die gegen unendlich laufen lasse (also das n), dann habe ich eine Folge die weder abgeschlossen noch offen ist, da die 0 nicht enthalten ist.
In unserem Skript steht das das Intervall [mm] [-\infty,+\infty] [/mm] abgeschlossen UND! offen sind. Aber kann ich das dann auch einfach auf eine Folge übertragen?
Sprich ich sage wir haben die Folge [mm] \vektor{-n \\ +n}_{n\varepsilon\IN} [/mm] . Wir hätten dann sozusagen eine Folge die gegen [mm] -\infty [/mm] läuft und eine gegen [mm] +\infty [/mm] . Wäre das richtig?

Danke für die Hilfe

Gruß!

        
Bezug
Folgen / Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Di 09.11.2010
Autor: fred97


> Finden Sie
>  abgeschlossene Teilmengen [mm](A_{n})_{n\varepsilon\IN}[/mm] von
> [mm]\IR^{2},[/mm] so dass [mm]\bigcup_{n\varepsilon\IN} A_{n} \not\varepsilon (\emptyset, \IR^{2})[/mm]
> offen ist.
>  Hallo,ich habe mir das erstmal versucht mit Mengen
> vorzustellen (z.b. Kreise) die abgeschlossen waren (sprich
> alle ihre Randpunkte enthalten). Wenn man aber
> abgeschlossene Mengen vereinigt, dann sind die Mengen ja
> noch immer abgeschlossen.

nein. Das ist falsch !

>  Mit Folgen habe ich mir auch versucht das vorzustellen.
> Wenn ich z.b. die Folge [mm]\bruch{1}{n}[/mm] habe und die gegen
> unendlich laufen lasse (also das n), dann habe ich eine
> Folge die weder abgeschlossen noch offen ist, da die 0
> nicht enthalten ist.

Unfug ! Was soll denn eine "offene" oder "abgeschlossene" Folge sein ????


>  In unserem Skript steht das das Intervall
> [mm][-\infty,+\infty][/mm] abgeschlossen UND! offen sind. Aber kann
> ich das dann auch einfach auf eine Folge übertragen?

Was soll das ? Was hat das mit der Aufgabe zu tun ?

>  Sprich ich sage wir haben die Folge [mm]\vektor{-n \\ +n}_{n\varepsilon\IN}[/mm]
> . Wir hätten dann sozusagen eine Folge die gegen [mm]-\infty[/mm]
> läuft und eine gegen [mm]+\infty[/mm] . Wäre das richtig?


Nein.

Es ist schwer,  Dir Tipps zu geben, ohne die Lösung zu verraten

Verschaffe Dir eine Folge [mm] (r_n) [/mm] in (0,1) mit [mm] \limes_{n\rightarrow\infty}r_n=1. [/mm] Welche ist schnurz, such Dir eine aus.

Wähle als [mm] A_n [/mm] die abgeschlossene Kreischeibe um (0,0) mit Radius [mm] r_n. [/mm]

Was ist dann  $ [mm] \bigcup_{n\varepsilon\IN} A_{n} [/mm] $  ?

FRED

>  
> Danke für die Hilfe
>  
> Gruß!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]