www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolgen auflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Folgen auflösen
Folgen auflösen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Do 14.10.2004
Autor: spacephreak

Hallo
Ich hatte folgende Aufgabenstellung, leider konnte ich nicht alle Folgen dazu lösen:
Bestimmen Sie für die nachstehenden Folgen (an) und die angegebenen  $ [mm] \varepsilon [/mm] $ - Werte jweils ein n $ [mm] \varepsilon \in \IN, [/mm] $ so dass |an| <  $ [mm] \varepsilon [/mm] $ für alle n  $ [mm] \ge [/mm] $ n $ [mm] \varepsilon [/mm] $ gilt:

1. Aufgabe:
an=  [mm] \bruch{(-1)^{n}}{3n} [/mm]
[mm] \varepsilon [/mm] = [mm] 10^{-5} [/mm]

Mein Lösungsansatz:
[mm] \bruch{(-1)^{n}}{3n} [/mm] < 1/100000   |*100000 | *3n
100000* [mm] (-1)^{n} [/mm] < 3n
wenn man jetzt den logarithmus nehmen will (um das n herunterzuholen), dann geht es ja nicht wegen dem -1. Ist diese Aufgabe somit nicht lösbar?

2. Aufgabe:
an = [mm] \bruch{(-2)^{n}}{n!} [/mm]
[mm] \varepsilon [/mm] = [mm] 10^{-4} [/mm]

Hier hab ich auch erst zwei mal multipliziert, um den Bruch verschwinden zu lassen, dann hab ich aber auch das selbe Problem mit log -2

Mfg

Markus

        
Bezug
Folgen auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Do 14.10.2004
Autor: Micha

Hallo mal wieder!

> Hallo
>  Ich hatte folgende Aufgabenstellung, leider konnte ich
> nicht alle Folgen dazu lösen:
>  Bestimmen Sie für die nachstehenden Folgen (an) und die
> angegebenen  [mm]\varepsilon[/mm] - Werte jweils ein n [mm]\varepsilon \in \IN,[/mm]
> so dass |an| <  [mm]\varepsilon[/mm] für alle n  [mm]\ge[/mm] n [mm]\varepsilon[/mm]
> gilt:
>
> 1. Aufgabe:
>  an=  [mm]\bruch{(-1)^{n}}{3n}[/mm]
> [mm]\varepsilon[/mm] = [mm]10^{-5} [/mm]
>  
> Mein Lösungsansatz:
>   [mm]\bruch{(-1)^{n}}{3n}[/mm] < 1/100000   |*100000 | *3n
>   100000* [mm](-1)^{n}[/mm] < 3n
> wenn man jetzt den logarithmus nehmen will (um das n
> herunterzuholen), dann geht es ja nicht wegen dem -1. Ist
> diese Aufgabe somit nicht lösbar?

Du hast doch [mm]|a_n| < \varepsilon[/mm]  gegeben. Also ist der Ansatz:
[mm] $\left|\bruch{(-1)^{n}}{3n}\right| [/mm] < [mm] \frac{1}{100000}$ [/mm]
[mm] $\Rightarrow \frac{\left|(-1)^n\right|}{\left|3n\right|} [/mm] < [mm] \frac{1}{100000}$ [/mm]   << nun ist aber [mm] $\left|(-1)^n\right| [/mm] = 1$ für alle [mm] n \in \IN[/mm], ebenso $3n>0$ deswegen:
[mm] $\Rightarrow \frac{1}{3n} [/mm] < [mm] \frac{1}{100000}$ [/mm]
[mm] $\gdw [/mm] 100000 < 3n$
[mm] $\Rightarrow \frac{100000}{3} [/mm] = [mm] 33333,3\dots [/mm] <n$
Damit ist das $n = 33334$.

>  
> 2. Aufgabe:
>  an = [mm]\bruch{(-2)^{n}}{n!} [/mm]
>   [mm]\varepsilon[/mm] = [mm]10^{-4} [/mm]
>  
> Hier hab ich auch erst zwei mal multipliziert, um den Bruch
> verschwinden zu lassen, dann hab ich aber auch das selbe
> Problem mit log -2

Auch hier ist das gar nicht nötig:
[mm] \left|\bruch{(-2)^{n}}{n!}\right|<\frac{1}{10000}[/mm]
[mm] \gdw \bruch{\left| (-1)^n \cdot 2^n\right|}{\left|n!\right|} < \frac{1}{10000}[/mm]    << gleiche Überlegung wie oben und zum Glück ist alles größer als 0 und die restlichen Beträge fallen weg:
[mm] \Rightarrow \frac{2^n}{n!} < \frac{1}{10000}[/mm]
[mm] \gdw 10000 \cdot 2^n < n![/mm]

Jetzt müssen wir leider wieder die gleiche überlegung wie gestern anstellen, wenn wir im elementaren der Analysis bleiben wollen. Ich denke du findest den Ansatz aber sehr schnell allein.

Das soll fürs erste genügen.

Lieber Gruß,
Micha ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]