Folgen, vollständige induktion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:31 Di 29.11.2005 | Autor: | nicole12 |
habe ein riesen Problem. Muss diese Aufgabe übermorgen abgeben und weiß nicht wie man das macht. Ich kann noch nicht einmal einen Anfang finden, weil ich keine Ahnung hab wie das funktionieren soll.
Wär super, wenn mir jemand aus der Patsche helfen könnte.
Gegeben sei eine Folge [mm] (a_{n}) [/mm] durch die rekursive Definition [mm] a_{k}=a_{k-1}+2a_{k-2} [/mm] für k>= 3 mit [mm] a_{1}=a_{2}=1.
[/mm]
Zeigen sie durch Vollständige Induktion, dass die Folge mit geeigneten p, q [mm] \in \IR [/mm] auch durch [mm] a_{k}=\bruch{p^{k}-(-1)^{k}}{q} [/mm] dargestellt werden kann.
Ich weiß garnicht, was rekursiv bedeutet( Monotoniekrieterium, Konvergenzkriterium hab ich wo gelesen, kann das aber nicht umsetzten) und mit diesem Ausdruck:"geeigenete p,q kann ich auch nix anfangen.
Wär echt super, wenn ihr mir helfen könntet. Vielen Dank für eure Mühen schon mal im Vorraus.
|
|
|
|
Hallo nicole12,
> habe ein riesen Problem. Muss diese Aufgabe übermorgen
> abgeben und weiß nicht wie man das macht. Ich kann noch
> nicht einmal einen Anfang finden, weil ich keine Ahnung hab
> wie das funktionieren soll.
> Wär super, wenn mir jemand aus der Patsche helfen könnte.
>
> Gegeben sei eine Folge [mm](a_{n})[/mm] durch die rekursive
> Definition [mm]a_{k}=a_{k-1}+2a_{k-2}[/mm] für k>= 3 mit
> [mm]a_{1}=a_{2}=1.[/mm]
>
> Zeigen sie durch Vollständige Induktion, dass die Folge mit
> geeigneten p, q [mm]\in \IR[/mm] auch durch
> [mm]a_{k}=\bruch{p^{k}-(-1)^{k}}{q}[/mm] dargestellt werden kann.
>
> Ich weiß garnicht, was rekursiv bedeutet(
> Monotoniekrieterium, Konvergenzkriterium hab ich wo
> gelesen, kann das aber nicht umsetzten) und mit diesem
> Ausdruck:"geeigenete p,q kann ich auch nix anfangen.
Rekursiv bedeutet hier, daß sich das aktuelle Folgenglied, aus den vorhergehenden Folgengliedern berechnet.
Zur Induktion. Zeige zunächst, daß die Gleichung für k=1,2,3 erfüllt ist.
Schliesse dann von k auf k+1, in dem Du in die rekursive Definition der Folgenglieder die behauptete Gleichung einsetzt. Dann vergleichst Du diese Berechnung mit der behaupteten Formel, und schliesst daraus, daß diese nur für ein bestimmtes p erfüllt werden kann. Das q ergibt sich dann zwangsläufig.
>
> Wär echt super, wenn ihr mir helfen könntet. Vielen Dank
> für eure Mühen schon mal im Vorraus.
Gruß
MathePower
|
|
|
|