www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolgenpaar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Folgenpaar
Folgenpaar < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgenpaar: aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:02 So 14.11.2004
Autor: Sandra21

Wer kann mir helfen?

Sei (an) und (bn) beschränkte Folgen in R. Zeigen Sie:
lim sup(an + bn) <= lim sup an + lim sup (bn),
lim sup(an + bn) >= lim sup an + lim inf (bn).

Geben Sie ein Folgenpaar an, für welches in der ersten Regel < und in der zweiten > gilt.


Danke

Sandra

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Folgenpaar: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 15:47 So 14.11.2004
Autor: baddi

Mal sehen ob ich deinen Fragetext richtig in Errinnerung habe (ist leider beim Antwort schreiben, herrausgeschnitten worden).

Nun erst mal war ich verblüfft über den Ausdruck
lim sup(an + bn)
Na sup(...) ist ja immer eine feste Zahl, die kleinste obere Grenze.
Darauf einen lim anzuwenden ist ja Quark.
lim(5) ist natürlich 5
und lim sup(an + bn)  = sup(an + bn)
Logisch.

Du kannst also
lim sup(an + bn) <= lim sup an + lim sup (bn)
auch schreiben als
sup(an + bn) <= sup an + sup (bn)

Vielleicht hillfit dir das weiter.
Ich weiss nicht anschaulich ist das ja trivial was du zeigen sollst... mal dir doch mal zwei kurven auf und du siehst das sofort.

Bezug
                
Bezug
Folgenpaar: Hinweis zur Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:58 So 14.11.2004
Autor: Astrid

Hallo,

> Mal sehen ob ich deinen Fragetext richtig in Errinnerung
> habe (ist leider beim Antwort schreiben, herrausgeschnitten
> worden).
>  
> Nun erst mal war ich verblüfft über den Ausdruck
>  lim sup(an + bn)
> Na sup(...) ist ja immer eine feste Zahl, die kleinste
> obere Grenze.
>  Darauf einen lim anzuwenden ist ja Quark.
>  lim(5) ist natürlich 5
>  und lim sup(an + bn)  = sup(an + bn)
> Logisch.
>  
> Du kannst also
>  lim sup(an + bn) <= lim sup an + lim sup (bn)
>  auch schreiben als
>  sup(an + bn) <= sup an + sup (bn)
>  
> Vielleicht hillfit dir das weiter.
>  Ich weiss nicht anschaulich ist das ja trivial was du
> zeigen sollst... mal dir doch mal zwei kurven auf und du
> siehst das sofort.

Leider ist es nicht ganz so leicht. Der lim sup ist der Limes superior und nicht der Limes des Supremums.

Er ist für eine Folge [mm](a_n )_{n \in \IN}[/mm] definiert als:

[mm]\limsup_{n\rightarrow\infty} a_n = \limes_{n \rightarrow \infty} (sup \{a_k : k \geq n \})[/mm]

Viele Grüße
Astrid

Bezug
        
Bezug
Folgenpaar: interner Link
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:42 Fr 19.11.2004
Autor: Julius

Hallo!

Der erste Teil der Aufgabe wurde hier von Marcel gelöst. Kannst du denn jetzt mal bitte versuchen den zweiten Teil selber anfangen zu lösen? Wenn du nicht weiterkommst, kannst du dich ja mit deinen bisherigen Ansätzen mal melden, dann helfen wir dir weiter. :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]