www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFolgenräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Folgenräume
Folgenräume < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 05.05.2013
Autor: Frosch20

Aufgabe
Definiert wird der folgenraum [mm] \zeta^p, [/mm] mit

[mm] ||x||p:=(\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p} [/mm]

und 1 [mm] \le [/mm] p < q < [mm] \infty [/mm]

a) Finden Sie (mit Beweis) eine konstante c>0, so dass [mm] ||x||_q \le c||x||_p [/mm] für alle x [mm] \in \zeta^p [/mm] gilt und folgern sie  [mm] \zeta^p \subseteq \zeta^q [/mm]

b) Zeigen sie [mm] \zeta^p \not= \zeta^q [/mm]

Ich dachte mir, dass ich vll die dreiecksungleichung benutzen kann.

Also da die folgen beschränkt sind konvergieren sie folglich gengen eine zahl a

Also ich kenne nur die dreiecksungleichung und hab versucht was zu basteln, aber das kann so nicht stimmen:

Ansatzt: ich dachte mir, die folgen konvergieren paarweise gegen ein a, also

[mm] (\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p} [/mm]

= [mm] (\summe_{k=1}^{\infty} |x_k-a_k|^p)^\bruch{1}{p} [/mm]


[mm] \le (\summe_{k=1}^{\infty} |x_k|+|a_k|^p)^\bruch{1}{p} [/mm]

Da kann ich ja schon aufhören, weils keinen sinn macht, oder ?

        
Bezug
Folgenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mo 06.05.2013
Autor: fred97


> Definiert wird der folgenraum [mm]\zeta^p,[/mm] mit
>  
> [mm]||x||p:=(\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p}[/mm]
>  
> und 1 [mm]\le[/mm] p < q < [mm]\infty[/mm]
>  
> a) Finden Sie (mit Beweis) eine konstante c>0, so dass
> [mm]||x||_q \le c||x||_p[/mm] für alle x [mm]\in \zeta^p[/mm] gilt und
> folgern sie  [mm]\zeta^p \subseteq \zeta^q[/mm]
>  
> b) Zeigen sie [mm]\zeta^p \not= \zeta^q[/mm]
>  Ich dachte mir, dass
> ich vll die dreiecksungleichung benutzen kann.
>  
> Also da die folgen beschränkt sind konvergieren sie
> folglich gengen eine zahl a

Unsinn !

>  
> Also ich kenne nur die dreiecksungleichung und hab versucht
> was zu basteln, aber das kann so nicht stimmen:
>  
> Ansatzt: ich dachte mir, die folgen konvergieren paarweise
> gegen ein a, also
>
> [mm](\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p}[/mm]
>  
> = [mm](\summe_{k=1}^{\infty} |x_k-a_k|^p)^\bruch{1}{p}[/mm]

Das ist doch Unfug !

>  
>
> [mm]\le (\summe_{k=1}^{\infty} |x_k|+|a_k|^p)^\bruch{1}{p}[/mm]
>  
> Da kann ich ja schon aufhören, weils keinen sinn macht,
> oder ?

So ist es. Dir scheint nicht klar zu sein, was [mm] \zeta^p [/mm] eigentlich ist.

Es ist ( mit [mm] K=\IR [/mm] oder K= [mm] \IC): [/mm]

[mm] \zeta^p=\{(x_k): x_k \in K (k=1,2,...), \summe_{k=1}^{\infty}|x_k|^p <\infty\} [/mm]

FRED


Bezug
                
Bezug
Folgenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Di 07.05.2013
Autor: Frosch20

Ich habe einen neun Ansatz.

Ich bin nun soweit, dass ich

[mm] \summe_{i=1}^{infty} \bruch{|x_i|^q}{|x_i|^p}\le [/mm] c

mit  [mm] \bruch{|x_i|^q}{|x_i|^p}\le [/mm] 1.

Nun müsste ich an der stelle weitermachen.

nun müsste [mm] \summe_{i=1}^{infty} \bruch{|x_i|^q}{|x_i|^p} [/mm] für einen folgenraum konvergieren. Ich habe nun aber keine konkrete Reihe gegeben, wie kann ich da weiter ansetzen.


Bezug
                        
Bezug
Folgenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mi 08.05.2013
Autor: ullim

Hi,

schau mal []hier

Da ist die Äquivalenz der p-Normen beschriebn. Damit solltest Du weiter kommen. Nun musst Du noch eine Folge konstuieren, die in [mm] \zeta_q [/mm] aber nicht in [mm] \zeta_q [/mm] liegt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]