www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenFormel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Formel
Formel < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel: Erklärung
Status: (Frage) beantwortet Status 
Datum: 15:43 Mo 18.03.2013
Autor: arraneo

Hey hey, ich hab grade versucht eine Aufgabe zu lösen und dann die Lösung angeguckt. Die Lösung ist mir an sich ziemlich klar, aber da gibt´s eine Anwendung einer Formel die ich gar nicht kenne.

Kann mir bitte jemanden erklären wie sie darauf gekommen sind um zu schreiben :
Setze [mm] a_n:=1+\frac{i}{n}, [/mm] für [mm] n\in [/mm] N

Sei [mm] f:C\to [/mm] C , [mm] z\to \frac{(z^2-1)^2}{|z+1|^2} [/mm]

Dann gilt für [mm] n\in [/mm] N :

[mm] f(a_n)=\frac{((1+\frac{i}{n})^2-1)^2}{|1+\frac{i}{n}-1|^2}=\frac{((1+\frac{i}{n})(1-\frac{i}{n})-1)^2}{\frac{1}{n^2}}=\frac{(1+1/n-1)^2}{1/n^2}=\frac{1}{n^2}. [/mm]

Also die Frage lautet: wie genau gilt:

[mm] (1+\frac{i}{n})^2=(1+\frac{i}{n})(1-\frac{i}{n}) [/mm] ?!

Vielen Dank,

arraneo ^^  

        
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mo 18.03.2013
Autor: fred97


> Hey hey, ich hab grade versucht eine Aufgabe zu lösen und
> dann die Lösung angeguckt. Die Lösung ist mir an sich
> ziemlich klar, aber da gibt´s eine Anwendung einer Formel
> die ich gar nicht kenne.
>
> Kann mir bitte jemanden erklären wie sie darauf gekommen
> sind um zu schreiben :
> Setze [mm]a_n:=1+\frac{i}{n},[/mm] für [mm]n\in[/mm] N
>
> Sei [mm]f:C\to[/mm] C , [mm]z\to \frac{(z^2-1)^2}{|z+1|^2}[/mm]

>



Sollte das nicht lauten    [mm]z\to \frac{(z^2-1)^2}{|z-1|^2}[/mm] ?

> Dann gilt für [mm]n\in[/mm] N :
>
> [mm]f(a_n)=\frac{((1+\frac{i}{n})^2-1)^2}{|1+\frac{i}{n}-1|^2}=\frac{((1+\frac{i}{n})(1-\frac{i}{n})-1)^2}{\frac{1}{n^2}}=\frac{(1+1/n-1)^2}{1/n^2}=\frac{1}{n^2}.[/mm]
>
> Also die Frage lautet: wie genau gilt:
>
> [mm](1+\frac{i}{n})^2=(1+\frac{i}{n})(1-\frac{i}{n})[/mm] ?!


Das ist falsch. Und damit obige Rechnung auch.

FRED

>
> Vielen Dank,
>
> arraneo ^^  


Bezug
                
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Mo 18.03.2013
Autor: arraneo


> > Hey hey, ich hab grade versucht eine Aufgabe zu lösen und
> > dann die Lösung angeguckt. Die Lösung ist mir an sich
> > ziemlich klar, aber da gibt´s eine Anwendung einer Formel
> > die ich gar nicht kenne.
> >
> > Kann mir bitte jemanden erklären wie sie darauf gekommen
> > sind um zu schreiben :
> > Setze [mm]a_n:=1+\frac{i}{n},[/mm] für [mm]n\in[/mm] N
> >
> > Sei [mm]f:C\to[/mm] C , [mm]z\to \frac{(z^2-1)^2}{|z+1|^2}[/mm]
>  >
>  
>
>
> Sollte das nicht lauten    [mm]z\to \frac{(z^2-1)^2}{|z-1|^2}[/mm]
> ?

DOCH, das war ein Tipfehler, aber was da unten steht ist einfach vom Buch abgeschrieben.


>  > Dann gilt für [mm]n\in[/mm] N :

> >
> >
> [mm]f(a_n)=\frac{((1+\frac{i}{n})^2-1)^2}{|1+\frac{i}{n}-1|^2}=\frac{((1+\frac{i}{n})(1-\frac{i}{n})-1)^2}{\frac{1}{n^2}}=\frac{(1+1/n-1)^2}{1/n^2}=\frac{1}{n^2}.[/mm]
> >
> > Also die Frage lautet: wie genau gilt:
> >
> > [mm](1+\frac{i}{n})^2=(1+\frac{i}{n})(1-\frac{i}{n})[/mm] ?!
>
>
> Das ist falsch. Und damit obige Rechnung auch.
>  
> FRED
>  >

> > Vielen Dank,
> >
> > arraneo ^^  
>  

also das gilt nicht, oder? (das war übrigens die Musterlösung von einer Klausur)


Bezug
                        
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 18.03.2013
Autor: fred97


> > > Hey hey, ich hab grade versucht eine Aufgabe zu lösen und
> > > dann die Lösung angeguckt. Die Lösung ist mir an sich
> > > ziemlich klar, aber da gibt´s eine Anwendung einer Formel
> > > die ich gar nicht kenne.
> > >
> > > Kann mir bitte jemanden erklären wie sie darauf gekommen
> > > sind um zu schreiben :
> > > Setze [mm]a_n:=1+\frac{i}{n},[/mm] für [mm]n\in[/mm] N
> > >
> > > Sei [mm]f:C\to[/mm] C , [mm]z\to \frac{(z^2-1)^2}{|z+1|^2}[/mm]
>  >  >
>  >  
> >
> >
> > Sollte das nicht lauten    [mm]z\to \frac{(z^2-1)^2}{|z-1|^2}[/mm]
> > ?
>  
> DOCH, das war ein Tipfehler, aber was da unten steht ist
> einfach vom Buch abgeschrieben.
>
>
> >  > Dann gilt für [mm]n\in[/mm] N :

> > >
> > >
> >
> [mm]f(a_n)=\frac{((1+\frac{i}{n})^2-1)^2}{|1+\frac{i}{n}-1|^2}=\frac{((1+\frac{i}{n})(1-\frac{i}{n})-1)^2}{\frac{1}{n^2}}=\frac{(1+1/n-1)^2}{1/n^2}=\frac{1}{n^2}.[/mm]
> > >
> > > Also die Frage lautet: wie genau gilt:
> > >
> > > [mm](1+\frac{i}{n})^2=(1+\frac{i}{n})(1-\frac{i}{n})[/mm] ?!
> >
> >
> > Das ist falsch. Und damit obige Rechnung auch.
>  >  
> > FRED
>  >  >

> > > Vielen Dank,
> > >
> > > arraneo ^^  
> >  

>
> also das gilt nicht, oder?

Nein, es gilt nicht.

Du kannst Dir ja mal überlegen für welche z [mm] \in \IC [/mm] die Gl.

(1)  [mm] (1+z)^2=(1-z)(1+z) [/mm]

gilt,

oder die Gl.

(2) [mm] (1+z)^2=(1+z)(1+\overline{z}). [/mm]

Für z=i/n gelten (1) und (2) jedenfalls nicht.

FRED


> (das war übrigens die
> Musterlösung von einer Klausur)
>  


Bezug
                                
Bezug
Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Mo 18.03.2013
Autor: arraneo

z ist an der Stelle nicht gleich i/n, sondern z=1+i/n

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]