www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFourier-Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Fourier-Reihen
Fourier-Reihen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier-Reihen: Frage
Status: (Frage) beantwortet Status 
Datum: 14:55 Mo 15.08.2005
Autor: matthias82

Hallo,
ich habe zwei Fragen zu Fourier-Reihen die sowohl die komplexe, als auch die Reelle Darstellung betreffen. Dabei geht um die Zusammenhänge zwischen der Entwicklung in der Papula-Formelsammlung und Entwicklung meines Profs.
Es ist nicht schwierig, aber ich steh grad total auf dem Schlauch.

I Komplexe Darstellung:

Papula:
f(x)= [mm] \summe_{n=-\infty}^{\infty} c_{n}*e^{jnx} [/mm]
mit
[mm] c_{n}= \bruch{1}{2\pi}* \integral_{0}^{2\pi} {f(x)*e^{-jnx} dx} [/mm]

mein Prof:
x(t)~ [mm] \summe_{k \varepsilon \IZ}^{} c_{k}*e^{jwkt}, [/mm] w= [mm] \bruch{2\pi}{T} [/mm]
mit
[mm] c_{k}= \bruch{1}{T} \integral_{0}^{T} {x(t)*e^{-jwkt} dt} [/mm]

Meine Fragen hierzu:

1. Wie hängen bei den beiden Darstellungen die Exponenten von e zusammen?? Muss ja irgendwas mit w zu tun haben.
2. wie erklären sich bei [mm] c_{n} [/mm]  bzw. c*_{k} die unterschiedlichen Faktoren vor dem Integral [mm] (\bruch{1}{2/pi} [/mm] bzw. [mm] \bruch{1}{T})? [/mm]


II Reelle Darstellung:

Papula:
[mm] f(x)=\bruch{a_{0}}{2}+ \summe_{n=1}^{\infty}a_{n}*cos(nx)+b_{n}*sin(nx) [/mm]
mit
[mm] a_{0}=\bruch{1}{\pi}* \integral_{0}^{2\pi} [/mm] {f(x) dx}
[mm] a_{n}=\bruch{1}{\pi}* \integral_{0}^{2\pi} [/mm] {f(x)*cos(nx) dx}
[mm] b_{n}=\bruch{1}{\pi}* \integral_{0}^{2\pi} [/mm] {f(x)*sin(nx) dx}

mein Prof:
[mm] x(t)~a_{0}+ \summe_{k=1}^{\infty}a_{k}*cos(wkt)+b_{k}*sin(wkt) [/mm]
mit
[mm] a_{0}=\bruch{1}{T}* \integral_{0}^{T} [/mm] {x(t) dt}
[mm] a_{k}=\bruch{2}{T}* \integral_{0}^{T} [/mm] {x(t)*cos(kwt) dt}
[mm] b_{k}=\bruch{2}{T}* \integral_{0}^{T} [/mm] {x(t)*sin(kwt) dt}

Meine Fragen hierzu:

1. Darstellung der Fourierreihe: Warum wird beim Papula [mm] a_{0} [/mm] durch 2 geteilt und bei meinem Prof nicht.
2. Warum stehen haben die Fourier-Koeffizienten bei der Paula-Darstellung und der meines Profs unterschiedliche Faktoren vorm Integral?
[mm] (\bruch{1}{\pi} [/mm] bzw. [mm] \bruch{1}{T} [/mm] oder gar [mm] \bruch{2}{T}) [/mm]
3. Wie erklären sich die unterschiedlichen Grenzen der Integrale?
4. Wie erklären sich die unterschieldichen Argumente von sin und cos bei den Darstellungen?

Hoffe ich hab mich verständlich ausgedrückt. Wie ihr seht begreif ich einfach den Zusammenhang zwischen beiden Darstellungen nicht.
Hoffe ihr könnt mir da helfen
Vielen Dank schonmal im Voraus!!

gruß
Matthias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fourier-Reihen: Erklärung
Status: (Antwort) fertig Status 
Datum: 18:43 Mo 15.08.2005
Autor: MathePower

Hallo matthias82,

[willkommenmr]

> I Komplexe Darstellung:
>  
> Papula:
>  f(x)= [mm]\summe_{n=-\infty}^{\infty} c_{n}*e^{jnx}[/mm]
>  mit
>  [mm]c_{n}= \bruch{1}{2\pi}* \integral_{0}^{2\pi} {f(x)*e^{-jnx} dx}[/mm]
>  
> mein Prof:
>  x(t)~ [mm]\summe_{k \varepsilon \IZ}^{} c_{k}*e^{jwkt},[/mm] w=
> [mm]\bruch{2\pi}{T}[/mm]
>  mit
>  [mm]c_{k}= \bruch{1}{T} \integral_{0}^{T} {x(t)*e^{-jwkt} dt}[/mm]
>  
> Meine Fragen hierzu:
>  
> 1. Wie hängen bei den beiden Darstellungen die Exponenten
> von e zusammen?? Muss ja irgendwas mit w zu tun haben.
>  2. wie erklären sich bei [mm]c_{n}[/mm]  bzw. c*_{k} die
> unterschiedlichen Faktoren vor dem Integral
> [mm](\bruch{1}{2/pi}[/mm] bzw. [mm]\bruch{1}{T})?[/mm]
>  

Es gilt ja die Formel [mm]\omega \;T\; = \;2\;\pi [/mm], wobei [mm]\omega[/mm] die Kreisfrequenz und [mm]T[/mm] die Periode ist.

Papula verwendet die spezielle Periode [mm]T\;=2\;\pi[/mm], während Dein Prof. die Periode T als allgemein ansetzt.

>
> II Reelle Darstellung:
>  
> Papula:
>   [mm]f(x)=\bruch{a_{0}}{2}+ \summe_{n=1}^{\infty}a_{n}*cos(nx)+b_{n}*sin(nx)[/mm]
>  
> mit
>  [mm]a_{0}=\bruch{1}{\pi}* \integral_{0}^{2\pi}[/mm] {f(x) dx}
>  [mm]a_{n}=\bruch{1}{\pi}* \integral_{0}^{2\pi}[/mm] {f(x)*cos(nx)
> dx}
>  [mm]b_{n}=\bruch{1}{\pi}* \integral_{0}^{2\pi}[/mm] {f(x)*sin(nx)
> dx}
>  
> mein Prof:
>  [mm]x(t)~a_{0}+ \summe_{k=1}^{\infty}a_{k}*cos(wkt)+b_{k}*sin(wkt)[/mm]
>  
> mit
>  [mm]a_{0}=\bruch{1}{T}* \integral_{0}^{T}[/mm] {x(t) dt}
>  [mm]a_{k}=\bruch{2}{T}* \integral_{0}^{T}[/mm] {x(t)*cos(kwt) dt}
>  [mm]b_{k}=\bruch{2}{T}* \integral_{0}^{T}[/mm] {x(t)*sin(kwt) dt}
>  
> Meine Fragen hierzu:
>  
> 1. Darstellung der Fourierreihe: Warum wird beim Papula
> [mm]a_{0}[/mm] durch 2 geteilt und bei meinem Prof nicht.

Bei Papula ist [mm]a_{0}[/mm] so definiert:

[mm]a_{0} \; = \;2\;\widetilde{a_{0} }\; = \;\frac{1} {\pi }\;\int\limits_{0}^{2\;\pi } {f\left( x \right)\;dx} [/mm]

>  2. Warum stehen haben die Fourier-Koeffizienten bei der
> Paula-Darstellung und der meines Profs unterschiedliche
> Faktoren vorm Integral?
>  [mm](\bruch{1}{\pi}[/mm] bzw. [mm]\bruch{1}{T}[/mm] oder gar [mm]\bruch{2}{T})[/mm]
>  3. Wie erklären sich die unterschiedlichen Grenzen der
> Integrale?
>  4. Wie erklären sich die unterschieldichen Argumente von
> sin und cos bei den Darstellungen?
>  

Siehe die Erklärungen unter komplexer Darstellung.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]