www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFourier Graph der Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Fourier Graph der Funktion
Fourier Graph der Funktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier Graph der Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:41 Do 07.02.2008
Autor: ebarni

Aufgabe
Berechnen Sie die Fouriertransformierte der folgenden Funktion:

[mm] f : \IR \to \IR, f(x) = 1 [/mm] falls [mm] x \in ] -3T, -T [ [/mm] [mm] \cup[/mm] [mm] ] T, 3T [ [/mm],

[mm] f(x) = 0 [/mm] sonst

[mm] T \ge 0 [/mm]

Hallo zusammen, zur Bestimmung der Fouriertransformierten würde ich gerne den Graph zu obiger Funktion zeichnen.

Mir ist jedoch nicht klar, was mit: [mm] x \in ] -3T,-T [ [/mm] [mm] \cup[/mm] [mm] ] T, 3T [ [/mm] gemeint ist, insbesondere mit dem [mm] \cup. [/mm] Wäre schön, wenn Ihr mir etwas weiter helfen könntet, dass ich zumindest mal eine Vorstellung von dem Aussehen der Funktion bekomme!

Vielen Dank und viele Grüße, Andreas



        
Bezug
Fourier Graph der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Do 07.02.2008
Autor: MatthiasKr

Hallo Andreas,
> Berechnen Sie die Fouriertransformierte der folgenden
> Funktion:
>  
> [mm]f : \IR \to \IR, f(x) = 1[/mm] falls [mm]x \in ] -3T, -T [[/mm] [mm]\cup[/mm] [mm]] T, 3T [ [/mm],
>
> [mm]f(x) = 0[/mm] sonst
>  
> [mm]T \ge 0[/mm]
>  Hallo zusammen, zur Bestimmung der
> Fouriertransformierten würde ich gerne den Graph zu obiger
> Funktion zeichnen.
>  
> Mir ist jedoch nicht klar, was mit: [mm]x \in ] -3T,-T [[/mm] [mm]\cup[/mm] [mm]] T, 3T [[/mm]
> gemeint ist, insbesondere mit dem [mm]\cup.[/mm] Wäre schön, wenn
> Ihr mir etwas weiter helfen könntet, dass ich zumindest mal
> eine Vorstellung von dem Aussehen der Funktion bekomme!
>  
> Vielen Dank und viele Grüße, Andreas
>  
>  

das ist nicht so schwer: das [mm] $\cup$-zeichen [/mm] bedeutet die vereinigungsmenge, das heisst also deine funktion ist gleich 1 in den intervallen $]-3T,T[$ ($-3T<x<-T$) und $]T,3T[$. ansonsten ist sie gleich 0.

gruss
matthias

Bezug
                
Bezug
Fourier Graph der Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:04 Fr 08.02.2008
Autor: ebarni

Hallo Matthias, vielen Dank für Deine Antwort!

Das heißt also, T ist irgend eine (positive) Konstante.

Die Funktion besteht also aus 2 Rechteckimpulsen der Höhe 1 und jeweils der Länge 2T.

Viele Grüße und nochmals: Danke!

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]