www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFourier Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Fourier-Transformation" - Fourier Transformation
Fourier Transformation < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourier Transformation: Wellengleichung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:07 Mi 29.06.2011
Autor: soljenitsin

hallo an alle
ich habe hier ne aufgabe.
das haben wir als hausaufgabe bekommen
und die aufgabe hat %50 punktenanzahl des gesamten übungsblatts
ich und 3 kollegen von mir haben versucht zu lösen; aber egal wie , wir sind immer stehen geblieben bei der aufgabe

erstmal die aufgabe

Aufgabe 3

Sei u: [mm] \IR \times [/mm] [0;+ [mm] \infty [/mm] [ [mm] \to \IR [/mm] eine Lösung der Wellengleichung

[mm] \bruch{\partial^{2}u}{\partial t^{2}}=\bruch{1}{9}\bruch{\partial^{2}u}{\partial x^{2}} [/mm] (x [mm] \in \IR [/mm] , t > 0)

für die:

[mm] \forall [/mm] t > 0 , [mm] \limes_{x\rightarrow \pm \infty} [/mm] u(x;t) = [mm] \limes_{x\rightarrow \pm \infty} \bruch{\partial u}{\partial x} [/mm] (x;t)=0

und

[mm] \forall [/mm] x [mm] \in \IR [/mm] , u(x;0) = [mm] \bruch{1}{x^{2}+9} [/mm] , [mm] \bruch{\partial u }{\partial t} [/mm] (x;0)=0

Verwenden Sie die Fouriertransformation, um u(x;t) explizit anzugeben.


wenn ihr uns dabei helfen könntet wären wir sehr dankbar
danke nochmals an alle


        
Bezug
Fourier Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Do 30.06.2011
Autor: MathePower

Hallo soljenitsin,

> hallo an alle
>  ich habe hier ne aufgabe.
>  das haben wir als hausaufgabe bekommen
>  und die aufgabe hat %50 punktenanzahl des gesamten
> übungsblatts
>  ich und 3 kollegen von mir haben versucht zu lösen; aber
> egal wie , wir sind immer stehen geblieben bei der aufgabe


Poste dazu Eure bisherigen  Rechenschritte.


>  
> erstmal die aufgabe
>  
> Aufgabe 3
>  
> Sei u: [mm]\IR \times[/mm] [0;+ [mm]\infty[/mm] [ [mm]\to \IR[/mm] eine Lösung der
> Wellengleichung
>  
> [mm]\bruch{\partial^{2}u}{\partial t^{2}}=\bruch{1}{9}\bruch{\partial^{2}u}{\partial x^{2}}[/mm]
> (x [mm]\in \IR[/mm] , t > 0)
>  
> für die:
>  
> [mm]\forall[/mm] t > 0 , [mm]\limes_{x\rightarrow \pm \infty}[/mm] u(x;t) =
> [mm]\limes_{x\rightarrow \pm \infty} \bruch{\partial u}{\partial x}[/mm]
> (x;t)=0
>  
> und
>  
> [mm]\forall[/mm] x [mm]\in \IR[/mm] , u(x;0) = [mm]\bruch{1}{x^{2}+9}[/mm] ,
> [mm]\bruch{\partial u }{\partial t}[/mm] (x;0)=0
>  
> Verwenden Sie die Fouriertransformation, um u(x;t) explizit
> anzugeben.
>  
>
> wenn ihr uns dabei helfen könntet wären wir sehr dankbar
>  danke nochmals an alle

>


Gruss
MathePower  

Bezug
                
Bezug
Fourier Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 So 03.07.2011
Autor: soljenitsin

wir sind bei der aufgabe nicht soviel weitergekommen.
ein kumpel von uns wollte das so lösen wie bei  Existenz- und Eindeutigkeitssatz  aber ist sinnlos.

also wie sind nicht weiter gekommen:)> Hallo soljenitsin,

>  
> > hallo an alle
>  >  ich habe hier ne aufgabe.
>  >  das haben wir als hausaufgabe bekommen
>  >  und die aufgabe hat %50 punktenanzahl des gesamten
> > übungsblatts
>  >  ich und 3 kollegen von mir haben versucht zu lösen;
> aber
> > egal wie , wir sind immer stehen geblieben bei der aufgabe
>  
>
> Poste dazu Eure bisherigen  Rechenschritte.
>  
>
> >  

> > erstmal die aufgabe
>  >  
> > Aufgabe 3
>  >  
> > Sei u: [mm]\IR \times[/mm] [0;+ [mm]\infty[/mm] [ [mm]\to \IR[/mm] eine Lösung der
> > Wellengleichung
>  >  
> > [mm]\bruch{\partial^{2}u}{\partial t^{2}}=\bruch{1}{9}\bruch{\partial^{2}u}{\partial x^{2}}[/mm]
> > (x [mm]\in \IR[/mm] , t > 0)
>  >  
> > für die:
>  >  
> > [mm]\forall[/mm] t > 0 , [mm]\limes_{x\rightarrow \pm \infty}[/mm] u(x;t) =
> > [mm]\limes_{x\rightarrow \pm \infty} \bruch{\partial u}{\partial x}[/mm]
> > (x;t)=0
>  >  
> > und
>  >  
> > [mm]\forall[/mm] x [mm]\in \IR[/mm] , u(x;0) = [mm]\bruch{1}{x^{2}+9}[/mm] ,
> > [mm]\bruch{\partial u }{\partial t}[/mm] (x;0)=0
>  >  
> > Verwenden Sie die Fouriertransformation, um u(x;t) explizit
> > anzugeben.
>  >  
> >
> > wenn ihr uns dabei helfen könntet wären wir sehr dankbar
>  >  danke nochmals an alle
>  >
>  
>
> Gruss
>  MathePower    


Bezug
                        
Bezug
Fourier Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 So 03.07.2011
Autor: fred97

Was hat MathePower gesagt:

"Poste dazu Eure bisherigen  Rechenschritte. "

FRED

Bezug
                                
Bezug
Fourier Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:29 So 03.07.2011
Autor: soljenitsin

WIR HABEN NOCH KEINE RECHENSCHRITTE.ICH KANN GUT VERSTEHEN WAS MATHEPOWER GESCHRIEBEN HAT. WILLST DU NOCHMAL WIEDERHOLEN FRED

Bezug
                                        
Bezug
Fourier Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:27 Mo 04.07.2011
Autor: fred97


> WIR HABEN NOCH KEINE RECHENSCHRITTE.ICH KANN GUT VERSTEHEN
> WAS MATHEPOWER GESCHRIEBEN HAT. WILLST DU NOCHMAL
> WIEDERHOLEN FRED

WARUM SCHREIST DU SO ?

FRED


Bezug
                                        
Bezug
Fourier Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:39 Mo 04.07.2011
Autor: angela.h.b.


> WIR HABEN NOCH KEINE RECHENSCHRITTE.

Hallo,

aha. Das war bisher leider überhaupt nicht ersichtlich.
Du schriebst von "stehengeblieben" und "nicht weitergekommen".
Dem würde auch ich entnehmen, daß bereits irgendetwas geschehen ist, und wenn ich vorhätte, hier zu helfen, würde auch ich das sehen wollen.
Insofern finde ich es überzogen, hier mit Großbuchstaben diejenigen, die doch i.a. sehr hilfsbereit sind, anzuschreien.

Ich entnehme Deinen Posts aber auf jeden Fall, daß Ihr Euch bereits eingehend mit der Aufgabe beschäftigt habt, und die Gedanken, die Ihr Euch dazu gemacht habt, solltest Du als Lösungsansatz mit einer gewissen Ausführlichkeit mitteilen. Es ist für die Helfenden dann einfacher, sinnvoll zu helfen.

Gruß v. Angela









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]