www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisFourierreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Fourierreihen
Fourierreihen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihen: Darstellungsform nachweisen
Status: (Frage) beantwortet Status 
Datum: 22:13 So 01.07.2007
Autor: Rinho

Aufgabe
Gegeben sei  eine einmal auf [0, T] stetig diffbare Funktion g.

z.z.: g besitzt eine Darstellung der Form:  

g(t) = [mm]\summe_{i=1}^{\infty} b_i \sin(\bruch{i*\pi}{T} * t)[/mm],    t [mm]\in[/mm] (0,T)

Das ist die Aufgabenstellung, leider fehlt mir eine Idee, mit der ich dieser Aufgabenstellung begegnen kann.

Es sieht ja ähnlich aus wie die Fourier-Koeffizienten, allerdings ist ja keine Aussage darüber getroffen worden, dass die Funktion (un)gerade ist, so dass auf jeden Fall die cosinus-Therme fehlen würden.

Ist dies generell der richtige Ansatz?


-- Ich habe diese Frage in keinem anderen Internetforum gestellt -


        
Bezug
Fourierreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 So 01.07.2007
Autor: leduart

Hallo
du kannst die fkt ja an 0 spiegeln, dann wird sie zu ner fkt mit  Periode 2T. die du periodisch fortsetzt.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]