www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisFourierreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Fourierreihen
Fourierreihen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihen: unklar, was zu tun
Status: (Frage) beantwortet Status 
Datum: 21:32 Di 08.05.2012
Autor: clemenum

Aufgabe
Sei $f(z) = [mm] \sum_{-\infty }^{\infty } c_n z^n [/mm]  $    $r< |z| < R, r<1<R $
Sei [mm] $\tilde{f}(x) [/mm] = [mm] f(e^{ix} [/mm] )$ $ [mm] 0\le [/mm] x [mm] \le 2\pi \Rightarrow \tilde [/mm] {f}(x)  = [mm] \sum_{n = -\infty } ^{\infty} c_n e^{inx} [/mm] $  

Bestimme Res  [mm] $f_{z_0 } [/mm] $  für [mm] $z_0 [/mm] = 0 $

(Warnung: Dozent warnt vor Tippfehlern im Skript, ich habe in dieser Aufgabenstellung jedoch keinen gefunden )

Diese [mm] $f_{z_0}$ [/mm]  scheint hier keinen Sinn zu machen. Macht vielleicht das ganze versehen mit [mm] $\tilde{f}_{z_0} [/mm] $ Sinn ??

Es ist unklar, wo man hier das Residuum hernehmen soll, denn es gibt dafür keine konkreten Angaben, es ist doch nur bekannt, dass es eine Laurent-Entwicklung gibt in [mm] $z_0=0$, [/mm] sonst scheint nichts bekannt zu sein.

Hat dies jemand verstanden?



        
Bezug
Fourierreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Mi 09.05.2012
Autor: fred97

Wahrscheinlich ist das Residuum von f in 0 gemeint. Wenn ja,so ist es= [mm] c_{-1} [/mm]

FRED

Bezug
                
Bezug
Fourierreihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:40 Mi 09.05.2012
Autor: clemenum

Wir habe das ja so definiert, dass das Residuum von f = [mm] $c_{-1} [/mm] $.

Die Frage ist, was hat das ganze mit [mm] $\tilde [/mm] {f} $ zu tun?
Was ist bei diesem Beispiel überhaupt gefragt, es kommt einfach nicht hervor??



Bezug
                        
Bezug
Fourierreihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 11.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]