www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFouriertransformation Rechteck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Fourier-Transformation" - Fouriertransformation Rechteck
Fouriertransformation Rechteck < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformation Rechteck: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:48 Fr 17.05.2019
Autor: Bluma2k

Aufgabe
Aufstellen der Fouriertransformierten der Rechteckfunktion

Hi, ich habe eine Rechteckfunktion gegeben und möchte die Fouriertransformierte wie folgt errechnen, komme aber nicht weiter:

[mm] X(f)=2\integral_{0}^{\bruch{1}{2}}{e^{-2\pi_jft}_dt} [/mm]

[mm] X(f)=\bruch{-1}{\pi jf}[e^{-2\pi jft}] [/mm] von 0 bis [mm] \bruch{1}{2} [/mm]

[mm] X(f)=\bruch{-1}{\pi jf}[e^{-2\pi jf}-1] [/mm]

[mm] X(f)=\bruch{-1}{\pi jf}[cos(2\pi [/mm] f)+j [mm] sin(-2\pi [/mm] f)-1]

[mm] X(f)=\bruch{-1}{\pi jf}cos(2\pi f)+\bruch{1}{\pi f}sin(-2\pi f)+\bruch{1}{\pi jf} [/mm]

ab hier weiß ich jetzt nicht wirklich weiter

raus kommen soll wie bekannt [mm] si(\pi [/mm] f)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Fouriertransformation Rechteck: Anderer Ansatz
Status: (Antwort) fertig Status 
Datum: 14:17 So 19.05.2019
Autor: Infinit

Hallo Bluma2k,
mit einem ein bisschen anderen Ansatz kommst Du ans Ziel.Dein Fehler ist es, bei einer komplexwertigen Funktion bereits die Achsensymmetrie des zu transformierenden Signals auszunutzen. Deswegen kommst Du später nicht weiter.
Mache ruhig mal den klassischen Ansatz
[mm] \int_{-\bruch{1}{2}}^{\bruch{1}{2}} \exp^{-j2\pi f t} \,dt [/mm].
Da bekommt man als Integral dann
[mm] \bruch{-1}{j 2 \pi f} \exp^{-j 2 \pi f t} |^{\bruch{1}{2}}_{\bruch{-1}{2}}[/mm] oder auch
[mm] \bruch{-1}{j 2 \pi f} \big( \cos(-2 \pi f t) + j \sin (-2 \pi f t)\big) |^{\bruch{1}{2}}_{\bruch{-1}{2}}[/mm]
Setze nun mal die Grenzen ein und überlege Dir, wie es mit der Achsensymmetrie von Sinus und Cosinus aussieht. Du wirst sehen, der Cosinus hebt sich raus und der zweifache Sinus bleibt erhalten.Passe bei den vielen Minuszeichen auf, da geht schnell mal eines davon verloren.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]