www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFourierwahnsinn
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Fourierwahnsinn
Fourierwahnsinn < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierwahnsinn: Idee, Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:46 Do 27.11.2014
Autor: LGS

Aufgabe
Es sei$ f: [mm] \IR \to \IR [/mm] $stetig und [mm] $2\pi$ [/mm] periodisch,sodass für $x [mm] \in [-\pi,\pi] [/mm] $gilt $f(x)= [mm] \frac{\pi}{2}-|x|$ [/mm]

a) Berechnen sie für $ k [mm] \in \mathbb [/mm] Z $ die Fourierkoeffizienten


[mm] $\hat [/mm] f(x)= [mm] \frac{1}{2\pi} \integral_{-\pi}^{\pi}{f(x)e^{-ikx} dx}$ [/mm]


$b)$

Verifizieren sie die Darstellung

$f(x)= [mm] \frac{1}{2\pi}\summe_{n=1}^{\infty}\frac{cos((2n-1)x)}{(2n-1)^2}$ [/mm]

hallo:)


zur

a) ich stecke hier fest

[mm] $\hat [/mm] f(x)= [mm] \frac{1}{2\pi} \integral_{-\pi}^{\pi}{f(x)e^{-ikx} dx}= \frac{1}{2\pi} \integral_{-\pi}^{\pi}{(\frac{\pi}{2}-|x|)e^{-ikx} dx}$ [/mm]

will sagen ich weis nicht wie ich den Betrag daraus kriege...:/

        
Bezug
Fourierwahnsinn: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Do 27.11.2014
Autor: Event_Horizon

Hallo!

Naja, so ein Wahnsinn ist das noch nicht...

Einen Betrag bekommt man meistens durch Umschreibung zu einer stückweise definierten Funktion geknackt.

Das bedeutet hier: Spalte das Integral auf in [mm] \int_{-\pi}^0...+\int_{0}^\pi... [/mm]

und ersetze $|x|_$ durch [mm] $\pm [/mm] x$


Bezug
                
Bezug
Fourierwahnsinn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Do 27.11.2014
Autor: LGS

Zuerst was ich gerade im skript gesehen hab,gilt laut vorlesung die Gleichheit zwischen [mm] $\hat [/mm] f(x)= [mm] \frac{1}{2\pi} \integral_{-\pi}^{\pi}{f(x)e^{-ikx} dx}= \frac{1}{\pi} \integral_{0}^{\pi}{f(x)cos(kx) dx}$ [/mm]
bringt das irgendwas?





Bezug
                        
Bezug
Fourierwahnsinn: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Do 27.11.2014
Autor: leduart

Hallo
Das hilft erst etwas, nachdem du festgestellt hast, dass es sich bei der fkt um eine  gerade fkt handelt, dann fallen alle Integrale über sin weg, das Integral von [mm] -\pi [/mm] bis 0=integral von 0bis [mm] \pi. [/mm] das ist also als erstes zu zeigen, dann ist diese Verkürzung richtig.
Gruß leduart

Bezug
                                
Bezug
Fourierwahnsinn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 27.11.2014
Autor: LGS

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

nun dann


$ \hat f(x)= \frac{1}{2\pi} \integral_{-\pi}^{\pi}{f(x)e^{-ikx} dx}= \frac{1}{2\pi} (\integral_{-\pi}^{0}{f(x)e^{-ikx}+\integral_{0}^{\pi}{f(x)e^{-ikx}  dx} )=\frac{1}{2\pi} (\integral_{-\pi}^{0}{(\frac{\pi}{2}+x)e^{-ikx}+\integral_{0}^{\pi}{(\frac{\pi}{2}-x)e^{-ikx}  dx} )=\frac{1}{2\pi} (\integral_{-\pi}^{0}{(\frac{\pi}{2}+x)e^{-ikx}-\integral_{0}^{\pi}{(-\frac{\pi}{2}+x)e^{-ikx}  dx} ) = $


jetzt hakt es wieder...:O

Bezug
                                        
Bezug
Fourierwahnsinn: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 27.11.2014
Autor: andyv

Hallo,

versuche es mit einer Substitution $x [mm] \mapsto [/mm] -x$ im ersten Integral. Dann partielle Integration.

Liebe Grüße

Bezug
                                        
Bezug
Fourierwahnsinn: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Fr 28.11.2014
Autor: leduart

Hallo
warum jetzt nicht mit cos??
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]