www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieFrage zu Bereichsintegral-bsp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Frage zu Bereichsintegral-bsp
Frage zu Bereichsintegral-bsp < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu Bereichsintegral-bsp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 11.03.2008
Autor: Matheanfaenger

Aufgabe
BSP: Der Graph der Funktion f(x,y) = [mm] \wurzel{1-x²-y²} [/mm] ist eine Halbkugel mit Mittelpunkt im Ursprung und Radius 1 (genauer gesagt: der über die (x,y)-Ebene liegende Teil der Einheitskugel). Um das Volumen der Einheitskugel zu berechnen, müssen wir diese Funktion über den Einheitskreis integrieren. Der Bereich hat also die Form B = {(x,y) [mm] \in \IR² [/mm] | -1 [mm] \le [/mm] y [mm] \le [/mm] 1, [mm] -\wurzel{1-y²} \le [/mm] x [mm] \le \wurzel{1-y²} [/mm] }. Das Volumen V der Einheitskugel erfüllt demnach

[mm] \bruch{V}{2} [/mm] = [mm] \integral_{-1}^{1} \integral_{-\wurzel{1-y²}}^{\wurzel{1-y²}}{\wurzel{1-x²-y²} dx dy} [/mm]

Wir substituieren im inneren INtegral x = [mm] \wurzel{1-y²}sin(t) [/mm] und erhalten dx = [mm] \wurzel{1-y²}cos(t) [/mm] sowie

[mm] \bruch{V}{2} [/mm] = [mm] \integral_{-1}^{1}{1-y²) \integral_{-\pi/2}^{\pi/2}}{cos²(t) dt dy} [/mm]

= [mm] \bruch{2\pi}{3} [/mm]

hallo liebes matheforum,

das mathebsp ist zwar schon komplett ausgerechnet, aber ich kapiers trotzdem nicht und wäre echt froh, wenn mir jmd helfen könnte: ich verstehe nicht, wieso man x einfach nur durch x = sqrt(1-y²)*sint (von wo kommt das sint???) ersetzen kann und wieso das dann alles so kommt wie es kommt .... könnte mir jmd schritt für schritt erklären, wieso das alles so ist und wie man dann schlussendlich zum ergebnis kommt?
also bereichsintegrale im allgemeinen sinne versteh ich schon, aber halt jetzt nur explizit dieses bsp nicht :( ...

aufjedenfall danke schon im voraus.

lg
martin

        
Bezug
Frage zu Bereichsintegral-bsp: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Di 11.03.2008
Autor: MathePower

Hallo Matheanfaenger,

>  hallo liebes matheforum,
>  
> das mathebsp ist zwar schon komplett ausgerechnet, aber ich
> kapiers trotzdem nicht und wäre echt froh, wenn mir jmd
> helfen könnte: ich verstehe nicht, wieso man x einfach nur
> durch x = sqrt(1-y²)*sint (von wo kommt das sint???)
> ersetzen kann und wieso das dann alles so kommt wie es
> kommt .... könnte mir jmd schritt für schritt erklären,
> wieso das alles so ist und wie man dann schlussendlich zum
> ergebnis kommt?
>  also bereichsintegrale im allgemeinen sinne versteh ich
> schon, aber halt jetzt nur explizit dieses bsp nicht :(
> ...

Wir haben also das folgende Doppelintegral zu berechnen:

[mm]\bruch{V}{2}[/mm] = [mm]\integral_{-1}^{1} \integral_{-\wurzel{1-y²}}^{\wurzel{1-y²}}{\wurzel{1-x²-y²} dx \ dy}[/mm]

Da man daran interessiert den Integranden so einfach wie möglich zu machen, wählt man hier eine Substitution, die den Wurzelausdruck verschwinden läßt.

Eine geeignete Substitution ist [mm]x=\wurzel{1-y^{2}}*\sin\left(t\right)[/mm], da diese auf ein leicht zu lösendes Integral führt.

Diese durchläuft alle Werte von [mm]-\wurzel{1-y^{2}}*\sin\left(t\right)[/mm] bis [mm]+\wurzel{1-y^{2}}*\sin\left(t\right)[/mm], da [mm]-1 \le \sin\left(t\right) \le 1[/mm].

Durch diese Substitution wird [mm]dx=\wurzel{1-y^{2}}*\cos\left(t\right) dt[/mm].

Die neuen Integrationsgrenzen sind somit:

[mm]-\wurzel{1-y^{2}}*\sin\left(t\right)=\wurzel{1-y^{2}}*\sin\left(t\right) \Rightarrow t=-\bruch{\pi}{2}[/mm]

und

[mm]+\wurzel{1-y^{2}}*\sin\left(t\right)=\wurzel{1-y^{2}}*\sin\left(t\right) \Rightarrow t=\bruch{\pi}{2}[/mm]

Daher gilt:


[mm]\bruch{V}{2}[/mm] = [mm]\integral_{-1}^{1} \integral_{-\wurzel{1-y²}}^{\wurzel{1-y²}}{\wurzel{1-x²-y²} dx \ dy}[/mm]
[mm]\integral_{-1}^{1} \integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\wurzel{1-y^{2}-\left(1-y^{2}\right)*\sin^{2}\left(t\right)} \ \wurzel{1-y^{2}}*\cos\left(t\right) dt \ dy}[/mm]
[mm]=\integral_{-1}^{1} \integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\wurzel{1-y^{2}}*\wurzel{1-\sin^{2}\left(t\right)}} \ \wurzel{1-y^{2}}*\cos\left(t\right) dt \ dy}[/mm]
[mm]=\integral_{-1}^{1} \integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\wurzel{1-y^{2}}*\cos\left(t\right) }} \ \wurzel{1-y^{2}}*\cos\left(t\right) dt \ dy}[/mm]
[mm]=\integral_{-1}^{1} \integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}{\left(1-y^{2}\right)*\cos^{2}\left(t\right) }} \ dt \ dy}[/mm]
[mm]=\integral_{-1}^{+1}{1-y^{2} dy} * \integral_{-\bruch{\pi}{2}}^{+\bruch{\pi}{2}}{\cos^{2}\left(t\right) dt}[/mm]  



>  
> aufjedenfall danke schon im voraus.
>  
> lg
>  martin

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]