www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFrage zu "Nullfolgen"
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Frage zu "Nullfolgen"
Frage zu "Nullfolgen" < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu "Nullfolgen": Wie beweisen?
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 10.11.2005
Autor: Commotus

Hallo,
ich soll zeigen, ob die Folge [mm] c_n [/mm] =  [mm] \bruch{n^2}{n+2} [/mm] eine Nullfolge ist oder nicht. Offensichtlich divergiert die Folge und somit kann sie keine Nullfolge sein. Wie widerlege ich, dass es sich hierbei um eine Nullfolge handelt? Die Grenzwertsätze für konvergente Folgen darf ich ja nicht anwenden, da die Folge divergiert und die Sätze nur für konvergente Folgen gelten.

        
Bezug
Frage zu "Nullfolgen": Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Do 10.11.2005
Autor: Herby

Hallo Commotus,

vielleicht solltest du das hier lesen: Antwort von Infinit

Liebe Grüße
Herby

Bezug
                
Bezug
Frage zu "Nullfolgen": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Do 10.11.2005
Autor: Commotus

Die Antwort hilft mir leider nicht viel weiter, da ich zeigen(!) soll, dass es sich hierbei um keine Nullfolge handelt - also anhand von mathematischen Ausdrucken beweisen soll, dass es keine Nullfolge ist. Argumentativ (mit Worten) habe ich verstanden, was zu tun ist und stimme mit Infinit überein, doch wie schreibe ich es mathematisch korrekt auf? Darum gehts mir.. ;-)

Bezug
                        
Bezug
Frage zu "Nullfolgen": Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Do 10.11.2005
Autor: Herby

Hallo nochmal,

eine Zahlenfolge hat doch dann einen Grenzwert und ist damit konvergent wenn gilt:

[mm] c=\limes_{n\rightarrow\infty}c_{n} [/mm]

und sie ist divergent, wenn gilt:

[mm] \pm \infty =\limes_{n\rightarrow\infty}c_{n} [/mm]

du brauchst dann nur zu zeigen:

[mm] \limes_{n\rightarrow\infty}c_{n}=....=....=+\infty [/mm]


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]