www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Frage zum Levi-Civita-Symbol
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Frage zum Levi-Civita-Symbol
Frage zum Levi-Civita-Symbol < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zum Levi-Civita-Symbol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 17.04.2011
Autor: Napkin

Hallo,

ich möchte mit Hilfe des Levi-Civita-Symbol das Kreuzprodukt von zwei 3 dimensionalen Vektoren ausrechnen, ich scheitere aber schon an der Defintion, da ich nicht weiss was das kleine i auf der linken Seite beim Kreuzprodukt meint.

Wie Summen funktionieren und wie ich die Permutation vom Levi-Civita-Symbol ist ( +1 -1 0 ) weiss ich, ich verstehe halt nur nicht wie das genau definiert ist, meine einzige Idee wäre:

Ein Kreuzprodukt ist ja wieder ein Vektor und somit muss ich ja wieder X Y Z Komponenten haben, somit könnte ich mir vorstellen, dass wenn ich i=1 setze ich die X Komponente des Kreuzprodukts bestimme und mit 2 Y und mit 3 Z.



Defintion:

$ (a [mm] \times b)_{i} [/mm] = [mm] \summe_{i=1}^{3} \summe_{j=1}^{3} \varepsilon_{ijk} a_{j} b_{j}$ [/mm]

Ich hoffe es ist verständlich was ich meine und mir kann jemand weiterhelfen

        
Bezug
Frage zum Levi-Civita-Symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 17.04.2011
Autor: Fulla

Hallo Napkin,

> Hallo,
>  
> ich möchte mit Hilfe des Levi-Civita-Symbol das
> Kreuzprodukt von zwei 3 dimensionalen Vektoren ausrechnen,
> ich scheitere aber schon an der Defintion, da ich nicht
> weiss was das kleine i auf der linken Seite beim
> Kreuzprodukt meint.
>  
> Wie Summen funktionieren und wie ich die Permutation vom
> Levi-Civita-Symbol ist ( +1 -1 0 ) weiss ich, ich verstehe
> halt nur nicht wie das genau definiert ist, meine einzige
> Idee wäre:
>  
> Ein Kreuzprodukt ist ja wieder ein Vektor und somit muss
> ich ja wieder X Y Z Komponenten haben, somit könnte ich
> mir vorstellen, dass wenn ich i=1 setze ich die X
> Komponente des Kreuzprodukts bestimme und mit 2 Y und mit 3
> Z.

Richtig, der Index i=1,2,3 auf der linken Seite gibt die Komponente des Vektors [mm]a\times b[/mm] an.

> Defintion:
>  
> [mm](a \times b)_{i} = \summe_{i=1}^{3} \summe_{j=1}^{3} \varepsilon_{ijk} a_{j} b_{j}[/mm]

Das muss aber [mm](a\times b)_i=\sum_{j=1}^3\sum_{k=1}^3\epsilon_{ijk}a_jb_k[/mm] heißen.

Lieben Gruß,
Fulla


Bezug
                
Bezug
Frage zum Levi-Civita-Symbol: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 So 17.04.2011
Autor: Napkin

Ja das war ein kleiner Flüchtigkeitsfehler,

Vielen Dank nun weiss ich wie es geht :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]