www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFrage zur Lösung von ExpFkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Frage zur Lösung von ExpFkt
Frage zur Lösung von ExpFkt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Lösung von ExpFkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:13 Do 12.02.2009
Autor: ChopSuey

Aufgabe
$\ [mm] e^x [/mm] + [mm] e^{x*\frac{1}{2}} [/mm] - 2 = 0 $

Hallo,
diese Aufage habe ich aus einem anderen Forentopic.

Folgendes

$\ [mm] e^x [/mm] + [mm] e^{x*\frac{1}{2}} [/mm] - 2 = 0 $

$\ z = [mm] e^{x*\frac{1}{2}} [/mm] $

$\ [mm] z^2 [/mm] + z - 2 = 0 $

$\ (z+2)(z-1) = 0 $ $\ [mm] \Rightarrow z_1 [/mm] = -2 [mm] \wedge z_2 [/mm] = 1 $

Beim folgenden Teil weiss ich nicht, ob das so ganz richtig ist...

$\  [mm] z_1 [/mm] = -2 [mm] \Rightarrow e^{x*\frac{1}{2}} [/mm] = -2$

$\ [mm] e^{x*\frac{1}{2}} [/mm] = -2 $

$\ [mm] \ln [/mm] (-2) = [mm] x^{\frac{1}{2}} \Rightarrow \ln [/mm] (-2) = [mm] \wurzel{x} [/mm] $

Für $\ [mm] z_2 [/mm] = 1 $ hätte ich es analog gemacht.

Stimmt das alles denn so?
Wie löse ich die Gleichung nun nach $\ x  $ auf? Für $\ -2 $ ist der Logarithmus garnicht definiert, oder?

Einige Unklarheiten :-)

Grüße
ChopSuey

        
Bezug
Frage zur Lösung von ExpFkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Do 12.02.2009
Autor: leduart

Hallo ChopSuey
im Prinzip ist das alles richtig.
aber ne e-fkt wird nie negativ, sodass die Loesung z=-2 keine fuer das Problem ist.(du hast das spaeter ja auch gemerkt, weil ln(-2) nicht existiert.)
bleibt nur z=1 und da sieht man ohne ln was x sein muss. Aber es mit ln zu machen ist natuerlich nicht falsch.
Gruss leduart

Bezug
                
Bezug
Frage zur Lösung von ExpFkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:29 Do 12.02.2009
Autor: ChopSuey

Hallo leduart,

vielen Dank für die Hilfe!

Viele Grüße
ChopSuey


****Entschuldigt, wollte eine Mitteilung (anstelle der Frage) schreiben ****


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]