www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeFragen zu linearer Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Fragen zu linearer Abbildung
Fragen zu linearer Abbildung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fragen zu linearer Abbildung: Hilfe bei alter Klausuraufgabe
Status: (Frage) überfällig Status 
Datum: 12:02 So 14.01.2007
Autor: bob86a

Aufgabe
Gegeben sei die folgende lineare Abbildung f mit

f: [mm] M^3 \to M^3, [/mm] f(x) = [mm] \pmat{ 2 & 4 & 2\alpha \\ -1 & -1 & -1 \\ 1 & \alpha + 2 & 9} [/mm] * x und b = [mm] \vektor{6 \\ -4 \\ 6}. [/mm]

(a) Sei M = [mm] \IR. [/mm] Für welche Werte [mm] \alpha \in [/mm] M gilt:
i. Kern(f) = {0}
ii. Es existieren unendlich viele Urbilder x [mm] \in M^3 [/mm] für b.
iii. b [mm] \not\in [/mm] Bild(f)

(b) Sei M = [mm] \IZ_{3}. [/mm] Bestimmen Sie die Urbilder von b [mm] \in \IZ_{3} [/mm] für [mm] \alpha [/mm] = [mm] [0]_{3} [/mm]

Hallo! Ich sitze gerade an einer alten Klausuraufgabe und komme mit der nicht so recht weiter...

Habe bei a) i. damit angefangen, Gauß auf die Matrix anzuwenden und zwar mit dem Nullvektor als Lösungsvektor:

[mm] \pmat{ 2 & 4 & 2\alpha & 0 \\ -1 & -1 & -1 & 0 \\ 1 & \alpha + 2 & 9 & 0} [/mm]
I. *1/2 + II und I. * (-1/2) + III führt zu

[mm] \pmat{ 2 & 4 & 2\alpha & 0 \\ 0 & 1 & \alpha -1 & 0 \\ 0 & \alpha & -\alpha + 9 & 0} [/mm]
II. [mm] *(-\alpha) [/mm] + III. führt zu

[mm] \pmat{ 2 & 4 & 2\alpha & 0 \\ 0 & 1 & \alpha -1 & 0 \\ 0 & 0 & -\alpha^2 + \alpha - \alpha + 9 & 0} [/mm]
also zu

[mm] \pmat{ 2 & 4 & 2\alpha & 0 \\ 0 & 1 & \alpha -1 & 0 \\ 0 & 0 & -\alpha^2 + 9 & 0} [/mm]

So... Nur weiß ich nun nicht, für welche [mm] \alpha [/mm] Kern(f)={0} gilt... Kann mir vielleicht jemand sagen/zeigen, wie das funktionieren soll?!
Da mein Problem mit ii. und iii. äquivalent ist bin ich auch noch nicht wirklich weiter gekommen...

Vielen dank schonmal!

Gruß,
Bernd

        
Bezug
Fragen zu linearer Abbildung: zu a)
Status: (Antwort) fertig Status 
Datum: 15:08 So 14.01.2007
Autor: DaMenge

Hallo,

zu a) also kern(f)={0} <=> f injektiv ist <=> f bijektiv ist
(bei endl. dim. Endomorphismen)

also der kern ist genau dann trivial, wenn f invertierbar ist, also die Determinante ungleich 0 ist.
also Determinante in abhaengigkeit der Variablen bestimmen und schauen, wann sie 0 werden wuerde, das sollte reichen...

btw: ins Uni-LA-Forum verschoben - nicht Schul-LA
(bitte naechste mal drauf achten)

viele Gruesse
DaMenge

Bezug
                
Bezug
Fragen zu linearer Abbildung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:57 So 14.01.2007
Autor: bob86a

Ah ok, danke! Dann wäre a) i. schon mal geklärt. :)
bei a.) iii. müsste ich ja nur das GS mit b als Lösungsvektor lösen, oder nicht? (b) ist mir denke ich auch klar...
Nur a.) ii. erschließt sich mir nicht. Wie wäre das denn zu lösen?

Mfg,
Bernd

Bezug
                        
Bezug
Fragen zu linearer Abbildung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 22.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]