www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFreier Modul / Quotient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Freier Modul / Quotient
Freier Modul / Quotient < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Freier Modul / Quotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Fr 17.07.2009
Autor: cantor

Hallo,

noch einmal eine Frage von mir: In meinem Skript zur Algebra II steht folgendes:

Sei $M$ ein $A$-Modul. Dann ist $M$ Quotient eines freien $A$-Moduls $F$.

und als Begründung:

Sei [mm] $\{ x_i \}_{i\in I}$ [/mm] ein Erzeugendensystem von $M$. Setze
$F = [mm] \oplus_{i \in I} [/mm] A$ mit "Standardbasis" [mm] $\{ e_i \}_{i \in I}$ [/mm]
Dann ist [mm] $\Theta [/mm] : F [mm] \to [/mm] M, [mm] e_i \mapsto [/mm] x$ eine surjektive A-lineare Abbildung.

Was ich nicht verstehe, ist: Was hat diese surjektive Abbildung mit der Tatsache zu tun, dass M Quotient eines freien A-Moduls ist? Ist wahrscheinlich einfach, aber ich sehe den Zusammenhang einfach nicht. Noch dazu ist die Abbildung seltsam definiert, soll das evtl [mm] $x_i$ [/mm] heißen statt x ?

Vielen Dank!

        
Bezug
Freier Modul / Quotient: Antwort
Status: (Antwort) fertig Status 
Datum: 02:57 Sa 18.07.2009
Autor: felixf

Hallo!

> noch einmal eine Frage von mir: In meinem Skript zur
> Algebra II steht folgendes:
>  
> Sei [mm]M[/mm] ein [mm]A[/mm]-Modul. Dann ist [mm]M[/mm] Quotient eines freien
> [mm]A[/mm]-Moduls [mm]F[/mm].
>  
> und als Begründung:
>  
> Sei [mm]\{ x_i \}_{i\in I}[/mm] ein Erzeugendensystem von [mm]M[/mm]. Setze
> [mm]F = \oplus_{i \in I} A[/mm] mit "Standardbasis" [mm]\{ e_i \}_{i \in I}[/mm]
>  
> Dann ist [mm]\Theta : F \to M, e_i \mapsto x[/mm] eine surjektive
> A-lineare Abbildung.
>  
> Was ich nicht verstehe, ist: Was hat diese surjektive
> Abbildung mit der Tatsache zu tun, dass M Quotient eines
> freien A-Moduls ist? Ist wahrscheinlich einfach, aber ich
> sehe den Zusammenhang einfach nicht.

Stichwort: Homomorphiesatz

> Noch dazu ist die
> Abbildung seltsam definiert, soll das evtl [mm]x_i[/mm] heißen
> statt x ?

Ja, soll es.

LG Felix


Bezug
                
Bezug
Freier Modul / Quotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Sa 18.07.2009
Autor: cantor

achso, der Quotient im Sinne von Modulo war gemeint. Ich dachte es wäre ein Modulquotient gemeint (weil kurz darüber der Modulquotient (A : B) definiert wurde :) ). Na gut, dann Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]