www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikFrobeniusnorm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Frobeniusnorm
Frobeniusnorm < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frobeniusnorm: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:26 Sa 26.02.2011
Autor: fagottator

Aufgabe
Zeigen Sie, dass die Frobeniusnorm [mm] [mm] ||A||_F [/mm] := [mm] \wurzel{\summe_{i,k=1}^{n} |a_{ik}|^2} [/mm] eine Matrixnorm ist, die mit [mm] || \cdot ||_2 [/mm] verträglich ist.

Hallo zusammen!

Ich habe die Verträglichkeit und einen Großteil der Normeigenschaften hinbekommen, nur bei der Submultiplikativität bin ich mir nicht sicher. Wäre lieb, wenn da mal wer drüberschauen könnte.

[mm] ||AB||_F = \wurzel{\summe_{i,j=1}^{n} |c_{ij}|^2} = \wurzel{\summe_{i,j=1}^{n} |\summe_{k=1}^{n} a_{ik}b_{kj}|^2} \le \wurzel{\summe_{i,j=1}^{n} (\summe_{k=1}^{n} |a_{ik}| \cdot |b_{kj}|)^2} \underbrace{\le}_{Cauchy-Schwarzsche-Ungleichung} \wurzel{\summe_{i,j=1}^{n} (\summe_{k=1}^{n} |a_{ik}|^2 \cdot \summe_{k=1}^{n} |b_{kj}|^2)} \le \wurzel{\summe_{i,j=1}^{n} \summe_{k=1}^{n} |a_{ik}|^2 \cdot \summe_{i,j=1}^{n}\summe_{k=1}^{n} |b_{kj}|^2)} = \wurzel{\summe_{i,k=1}^{n} |a_{ik}|^2 \cdot \summe_{j,k=1}^{n} |b_{kj}|^2)} = \wurzel{\summe_{i,k=1}^{n} |a_{ik}|^2} \cdot \wurzel{\summe_{j,k=1}^{n} |b_{kj}|^2)} = ||A||_F \cdot ||B||_F [/mm]

Hab ich das so richtig gemacht?

LG
fagottator

        
Bezug
Frobeniusnorm: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Sa 26.02.2011
Autor: zahllos

Hallo,

da hast du dir ja eine Riesenarbeit mit den ganzen Formeln gemacht!
Im Prinzip stimmts auch, nur die erste Ungleichung passt nicht
(wenn die gelten würde, wäre z.B. [mm] (a+b)^2 \le a^2+b^2 [/mm] !)
Lass die dritte Wurzel von links einfach weg und verwende statt
dessen gleich die Cauchy-Schwarzsche Ungleichung!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]