www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenFrobeniusnorm, induziert?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Frobeniusnorm, induziert?
Frobeniusnorm, induziert? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frobeniusnorm, induziert?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 So 25.10.2015
Autor: sissile

Aufgabe
Die durch [mm] ||.||_1 [/mm] (Betragssummennorm) induzierte Norm auf [mm] \mathbb{K}^{m\times n} [/mm] ist [mm] sup_{||x||_1=1}||Ax||_1. [/mm] Diese entspricht der Spaltensummennorm [mm] max_{1\le j \le n} \sum_{i=1}^m |a_{i,j}|. [/mm]
(gezeigt)

Meine Frage:Ist die Frobeniusnorm: [mm] ||A||_F [/mm] := [mm] (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{\frac{1}{2}} [/mm] die durch die euklidische Norm [mm] ||.||_2 [/mm] induzierte Norm?
ALso ist: [mm] ||A||_F [/mm] = [mm] sup_{||x||_2=1} ||Ax||_2 [/mm] ?

Ich konnte zeigen [mm] ||A||_F [/mm] ist einer obere Schranke für [mm] ||Ax||_2 \forall [/mm] x [mm] \in \mathbb{K}^n [/mm] mit [mm] ||x||_2=1: [/mm]
[mm] ||Ax||_2 =(\sum_{i=1}^m|\sum_{j=1}^n a_{ij} x_j|^2)^\frac{1}{2} \le (\sum_{i=1}^m (\sum_{j=1}^n |a_{ij} [/mm] * [mm] x_j|)^2)^\frac{1}{2} \underbrace{\le}_{\mbox{Cauchy-Schwarz-Ungl}} \sqrt{\sum_{i=1}^m (\sum_{j=1}^n|a_{ij}|^2) * (\sum_{j=1}^n|x_j|^2)} [/mm] = [mm] ||x||_2 [/mm] * [mm] ||A||_F= [/mm] 1* [mm] ||A||_F [/mm]

Aber ist [mm] ||A||_F [/mm] auch die kleinste obere Schranke für [mm] ||Ax||_2 [/mm] ?
Sonst hat man meist x speziell gewählt sodass man dies zeigt. Ist es mir nur nicht gelungen oder ist es falsch?

        
Bezug
Frobeniusnorm, induziert?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 So 25.10.2015
Autor: fred97


> Die durch [mm]||.||_1[/mm] (Betragssummennorm) induzierte Norm auf
> [mm]\mathbb{K}^{m\times n}[/mm] ist [mm]sup_{||x||_1=1}||Ax||_1.[/mm] Diese
> entspricht der Spaltensummennorm [mm]max_{1\le j \le n} \sum_{i=1}^m |a_{i,j}|.[/mm]
>  
> (gezeigt)
>  
> Meine Frage:Ist die Frobeniusnorm: [mm]||A||_F[/mm] := [mm](\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{\frac{1}{2}}[/mm]
> die durch die euklidische Norm [mm]||.||_2[/mm] induzierte Norm?



Nein ! Für die Einheitsmatrix E gilt: [mm] ||E||_F= \wurzel{n}. [/mm] Für jedes x mit [mm] ||x||_2=1 [/mm] haben wir jedoch [mm] ||Ex||_2=1. [/mm]

Die Norm [mm] ||*||_2 [/mm] kannst Du austauschen gegen jede(!) Norm auf [mm] \IR^n [/mm] !

D.h. die Frobeniusnorm wird von keiner Vektornorm induziert.

FRED

>  ALso ist: [mm]||A||_F[/mm] = [mm]sup_{||x||_2=1} ||Ax||_2[/mm] ?
>  Ich konnte zeigen [mm]||A||_F[/mm] ist einer obere Schranke für
> [mm]||Ax||_2 \forall[/mm] x [mm]\in \mathbb{K}^n[/mm] mit [mm]||x||_2=1:[/mm]
>  [mm]||Ax||_2 =(\sum_{i=1}^m|\sum_{j=1}^n a_{ij} x_j|^2)^\frac{1}{2} \le (\sum_{i=1}^m (\sum_{j=1}^n |a_{ij}[/mm]
> * [mm]x_j|)^2)^\frac{1}{2} \underbrace{\le}_{\mbox{Cauchy-Schwarz-Ungl}} \sqrt{\sum_{i=1}^m (\sum_{j=1}^n|a_{ij}|^2) * (\sum_{j=1}^n|x_j|^2)}[/mm]
> = [mm]||x||_2[/mm] * [mm]||A||_F=[/mm] 1* [mm]||A||_F[/mm]
>  
> Aber ist [mm]||A||_F[/mm] auch die kleinste obere Schranke für
> [mm]||Ax||_2[/mm] ?
>  Sonst hat man meist x speziell gewählt sodass man dies
> zeigt. Ist es mir nur nicht gelungen oder ist es falsch?


Bezug
                
Bezug
Frobeniusnorm, induziert?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 So 25.10.2015
Autor: sissile

Danke für die Antwort!

Aber du beschränkst dich auf den quadratischen Spezialllfall (was ja für ein Gegenbeispiel reicht) denn sonst würde es ja nicht so passen?

LG,
sissi



Bezug
                        
Bezug
Frobeniusnorm, induziert?: Antwort
Status: (Antwort) fertig Status 
Datum: 05:46 Mo 26.10.2015
Autor: fred97


> Danke für die Antwort!
>  
> Aber du beschränkst dich auf den quadratischen
> Spezialllfall (was ja für ein Gegenbeispiel reicht)


Ja

> denn
> sonst würde es ja nicht so passen?


Das verstehe ich nicht. Nach meinem "Anstupser" solltest Du eigentlich in der Lage sein, auch im nichtquadratischen Fall ein Gegenbeispiel zu finden.

FRED

>  
> LG,
>  sissi
>  
>  


Bezug
                                
Bezug
Frobeniusnorm, induziert?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Mo 26.10.2015
Autor: sissile

Hallo,
Im nicht quadratischen Fall ist für n [mm] \ge [/mm] m: [mm] ||I_n||_F= \sqrt{m} [/mm] und für n<m: [mm] ||I_n||_F= \sqrt{n} [/mm]
Mein Problem ist:
Aus x mit $ [mm] ||x||_2=1 [/mm] $ folgt nicht $ [mm] ||I_n x||_2=1 [/mm] $ im nicht quadratischen Fall für n > m. Denn [mm] I_n*x [/mm] enthält nur die ersten m Komponenten von x,dannach nur 0en.
Also kann man es in dem nicht quadratischen Fall nicht so allgemein hinschreiben sondern muss ein konkretes Gegenbeispiel z.B.: [mm] x=e_1 [/mm] und [mm] n\ge2 [/mm] angeben.

Bezug
                                        
Bezug
Frobeniusnorm, induziert?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Mo 26.10.2015
Autor: fred97


> Hallo,
>  Im nicht quadratischen Fall ist für n [mm]\ge[/mm] m: [mm]||I_n||_F= \sqrt{m}[/mm]
> und für n<m: [mm]||I_n||_F= \sqrt{n}[/mm]
>  Mein Problem ist:
>  Aus x mit [mm]||x||_2=1[/mm] folgt nicht [mm]||I_n x||_2=1[/mm] im nicht
> quadratischen Fall für n > m. Denn [mm]I_n*x[/mm] enthält nur die
> ersten m Komponenten von x,dannach nur 0en.
>  Also kann man es in dem nicht quadratischen Fall nicht so
> allgemein hinschreiben sondern muss ein konkretes
> Gegenbeispiel z.B.: [mm]x=e_1[/mm] und [mm]n\ge2[/mm] angeben.

Ja

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]