www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieFubini und Tonelli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Fubini und Tonelli
Fubini und Tonelli < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fubini und Tonelli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Do 21.06.2012
Autor: tkgraceful

Aufgabe
Verstehe die Aussage der beiden Sätze.



Diese Aufgabe habe ich mir natürlich selbst gestellt.

Bei uns sieht Tonelli wie folgt aus:
Seien [mm] (X_i,\mathcal A_i, \mu_i) [/mm] zwei [mm] \sigma [/mm] -endliche Maßräume. [mm] \mu=\mu_1\times \mu_2,[/mm]  [mm]\mathcal A =\mathcal A_1\times \mathcal A_2, f:X_1\times\X_2\to [0,\infty][/mm] sei [mm]\mathcal A[/mm] -messbar.

Dann gilt [mm] \int f\mu [/mm] = [mm] \int\int f(x,y)\mu_2(dy)\mu_1(dx) [/mm] = [mm] \int\int f(x,y)\mu_1(dx)\mu_2(dy) [/mm]


Jetzt hab ich nochmal woanders gespickt: Siehe dieses Lemma []http://yfrog.com/3w57rqp.


Damit glaube ich, sind unsere Voraussetzungen oben nicht vollständig. Dass f messbar ist, reicht ja noch nicht. Vor allem muss die Funktion [mm] f(\cdot,y) [/mm] doch [mm] \mu_1 [/mm] Integrierbar und [mm] f(x,\cdot) [/mm] muss [mm] \mu_2 [/mm] -integrierbar sein, oder?

Viele Grüße,

chris



        
Bezug
Fubini und Tonelli: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Do 21.06.2012
Autor: fred97


> Verstehe die Aussage der beiden Sätze.
>  
>
> Diese Aufgabe habe ich mir natürlich selbst gestellt.
>  
> Bei uns sieht Tonelli wie folgt aus:
>  Seien [mm](X_i,\mathcal A_i, \mu_i)[/mm] zwei [mm]\sigma[/mm] -endliche
> Maßräume. [mm]\mu=\mu_1\times \mu_2,[/mm]  [mm]\mathcal A =\mathcal A_1\times \mathcal A_2, f:X_1\times\X_2\to [0,\infty][/mm]
> sei [mm]\mathcal A[/mm] -messbar.
>  
> Dann gilt [mm]\int f\mu[/mm] = [mm]\int\int f(x,y)\mu_2(dy)\mu_1(dx)[/mm] =
> [mm]\int\int f(x,y)\mu_1(dx)\mu_2(dy)[/mm]

bei Tonelli müssen die Funktion f nur messbar sein. Dafür muss f [mm] \ge [/mm] 0 sein. Das Integral darf auch [mm] \infty [/mm] sein.

>  
>
> Jetzt hab ich nochmal woanders gespickt: Siehe dieses Lemma
> []http://yfrog.com/3w57rqp.

Das ist der Satz von Fubini, also nicht Tonelli !

>  
>
> Damit glaube ich, sind unsere Voraussetzungen oben nicht
> vollständig. Dass f messbar ist, reicht ja noch nicht. Vor
> allem muss die Funktion [mm]f(\cdot,y)[/mm] doch [mm]\mu_1[/mm] Integrierbar
> und [mm]f(x,\cdot)[/mm] muss [mm]\mu_2[/mm] -integrierbar sein, oder?

Bei Fubini, ja

FRED

>  
> Viele Grüße,
>  
> chris
>
>  


Bezug
                
Bezug
Fubini und Tonelli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Mo 25.06.2012
Autor: tkgraceful

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]