Füllhöhe nach Torricelli < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ein zylindrischer Tank mit einem Durchmesser von [mm] D_{r} [/mm] = 2,0 m und einer Höhe von H = 4,0 m wird mit einem Volumenstrom V´=1,0 m³/min gefüllt. Gleichzeitig läuft die Flüssigkeit durch eine Ablauföffnung des Durchmessers [mm] D_{ab} [/mm] = 50 mm ab. Für die Abflussgeschwindigkeit gilt nach Torricelli [mm] v=\wurzel{2*g*h}
[/mm]
Stelle die Füllhöhe des Tanks als Funktion der Zeit vom Füllbeginn t=0 bis zu einer Füllhöhe von 80% der Behälterhöhe [mm] (t_{E}) [/mm] dar |
Könntet ihr mir einen Tipp für den Rechenweg geben? Ich finde nämlich keinen vernünftigen Rechenweg der mich zum Ergebnis führen könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
ein Tipp wäre: aus Zu- und Abflussrate die momentane Änderungsrate des Füllvolumens bestimmen (bei einem Zylinder kannst du es aber auch über die Höhe machen, da das Volumen proportional zur Höhe ist), um dann das Voliumen (die Füllhöhe) in Abhängigkeit von der Zeit durch eine Integralfunktion zu beschreiben.
Gruß, Diophant
|
|
|
|
|
Danke für die schnelle Hilfe. Jedoch war ich so weit auch gekommen. Mein Problem ist eben diese Differenz zu errechnen. Hatte mich dummerweise zu allgemein ausgedrückt. Aus der Aufgabenstellung geht ja eine Volumenzunahme hervor. Die Berechnung wie viel eben diese Zunahme beträgt ist das große Rätsel meinerseits.
|
|
|
|
|
Hallo,
setze mal so an:
[mm] h(t)=k*v_z-f(h(t))
[/mm]
Dabei sind:
h(t): Füllhöhe zum Zeitpunkt t
k: eine Proportionskonstante zwischen Zuflussgeschwindigkeit und Füllhöhe
f(h(t)): eine Funktion, welche die zum Zeitpunkt t angefallene Höhendifferenz durch den Abfluss beschreibt. Die bekommst du mit Torricelli.
IMO müsste man damit eine Funktionalgleichung für die tatsächliche Füllhöhe zum Zeitpunkt t h(t) ermitteln können.
Gruß, Diophant
|
|
|
|