www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentalsystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Fundamentalsystem
Fundamentalsystem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsystem: ebenfalls Fund.system
Status: (Frage) beantwortet Status 
Datum: 20:12 Do 25.08.2011
Autor: mikexx

Aufgabe
Hallo, eine kleine Frage habe ich, die ich nicht alleine lösen kann:

Sei [mm]A:\mathbb R\to\mathbb R^{n\times n}[/mm] stetig und periodisch, d.h. es gibt ein [mm] p\in\mathbb [/mm] R, sodass A(t+p)=A(t) für alle [mm] t\in\mathbb [/mm] R.

Sei jetzt Y eine Fundamentalmatrix der Differenzialgleichung

y'(t)=A(t)y(t).


Zeige, dass dann auch die Abbildung [mm]Y_k:t\mapsto Y(t+kp)[/mm] eine Fundamentalmatrix ist (k ganzzahlig).

Ich hab total die Probleme zu verstehen, wie eine Abbildung eine Fundamentalmatrix sein soll!

Meint man, dass Y(t+kp) eine Fundamentalmatrix sein soll oder was meint man?!

Tipps sind willkommen. :-)

LG, mikexx

        
Bezug
Fundamentalsystem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:55 Do 25.08.2011
Autor: mikexx

Hm, also es gilt ja einmal

[mm] A(t)=\frac{Y'(t)}{Y(t)} [/mm] (Y(t) ist ja nach Voraussetzung Fundamentalmatrix, also gilt ja, dass y=Yc Lösung ist und es gilt

(Y(t)c)'=A(t)Y(t)c

Angenommen Y(t+kp) ist echt Fundamentalmatrix.

Andererseits gilt doch aber wegen A(t)=A(t+kp) dann

(Y'(t+kp)c)=A(t+kp)Y(t+kp)x=A(t)Y(t+kp)c

und deswegen doch auch

[mm] A(t)=\frac{Y'(t+kp)}{Y(t+kp)} [/mm]


Und ist deswegen nicht Y(t)=Y(t+kp)?


Ist nur eine Idee!



Bezug
                
Bezug
Fundamentalsystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 27.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Fundamentalsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Do 25.08.2011
Autor: Harris

Hi! :)

Um zu zeigen, dass etwas eine DGL löst, leitet man es am besten ab:

$(Y(t+kp))'=Y'(t+kp)=A(t+kp)Y(t+kp)=A(t)Y(t+kp)$

Du kannst es auch spaltenweise betrachten.
Also erfüllt diese Matrix die DGL und ist somit eine Fundamentalmatrix.

Grüße,
Harris

Bezug
                
Bezug
Fundamentalsystem: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Fr 26.08.2011
Autor: mikexx

Och, das ist ja nicht schwer.

Vielen lieben Dank für den effektiven Hinweis!

LG, mikexx

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]