www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentalsystem bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Fundamentalsystem bestimmen
Fundamentalsystem bestimmen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsystem bestimmen: Fundamentalsystem
Status: (Frage) beantwortet Status 
Datum: 13:52 Do 20.12.2007
Autor: Murx

Hallo Mathefreunde,

bei der folgenden Aufgabe komm ich leider nicht weiter:

Bestimmen Sie die allgemeine reelle Lösung des DGL-Systems:

y' =  [mm] \pmat{ 1 & -2 & 0 \\ 2 & 0 & -1 \\ 4 & -2 & -1 }y [/mm]

Eigentlich ist die Aufgabe ja nicht so schwer. Muss ja lediglich ein Fundamentalsystem aufstellen und dieses evtl. noch in ein reelles FS überführen, je nachdem, ob man ein komplexes oder ein reelles FS erhält.

Ich hab dann mal mit dem charakteristischen Polynom angefangen und folgendes erhalten:

P(x) = x³ + x + 2

Damit komm ich auf die Eigenwerte: [mm] x_{1}= [/mm] 1, [mm] x_{2,3}= [/mm] - [mm] \bruch{1}{2} \pm \bruch{\wurzel{7}}{2} [/mm] i

Aber dann klappt die Berechnung eines eigenvektors zu EW [mm] x_{2,3} [/mm] nicht mehr. Irgendwie fällt dann nix mehr weg.

Ich vermute ich muss da irgendwo einen Fehler bei den Eigenwerten gemacht haben, finde ihn aber nicht. ;-(

Ich bitte daher um Hilfe. Vielleicht findet einer von euch ja meinen Fehler. Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fundamentalsystem bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 20.12.2007
Autor: blascowitz

Guten Tach
Also die EW der Matrix stimmen. Allerdings ist die Berechnung der EV recht ecklich^^.Wobei man feststellt das man zweimal den selben EV hat.  Es ergibt sich für [mm] \lambda_{2}= \vektor{ - \bruch{2}{-3+i\wurzel{7}}\\\bruch{1}{2} \\1}. [/mm] Das selbe ergibt sich auch für Das komplex konjugierte. Du hast also trotzdem 3 Vektoren im endeffekt. Daraus kann man sich dann ein Fundamentalsystem.
Frohe Weihnachten und einen schönen Tach

Bezug
                
Bezug
Fundamentalsystem bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:12 Do 20.12.2007
Autor: Murx

Hallo blascowitz,

ist denn der EV zum komplex konjugierten EW nicht mit einem Minus vor dem i, also ...-3 - [mm] i\wurzel{7} [/mm] ???

So kenn ich das zumindest nur.

Die Rechnung zum EV werd ich jetzt auf jeden fall nochmal versuchen. Hoffe das bekomm ich hin.

Auf jeden Fall schonmal danke, dass du dir diese eklige Rechnerei angetan hast.


Bezug
                        
Bezug
Fundamentalsystem bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 22.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Fundamentalsystem bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Mi 02.01.2008
Autor: IG0R

Also eigentlich steht die Lösung zu der Aufgabe ja schon im Skript auf Seite 63. Allerdings hat der Prof andere Eigenvektoren raus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]