www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungFunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Funktion
Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:26 Mi 14.11.2007
Autor: engel

Hallo!

Gegeben ist der Graph einer Funktion

f(x) = [mm] x^4 [/mm] - [mm] 2x^3 [/mm]

Ermitteln Sie eine Gleichung für die durch den Punkt P gezeichnete Gerade.

P(0|1)

P liegt auf der Gerade, nicht aber auf der Kurve.

Das Bild habe ich in der Anlage.

Ich habe das dasnn so gemacht, dass ich in die Tangenengleichung eingestezt havbe und für x =0 und für y=1 Es steht dann da:

1 = [mm] -3a^4 [/mm] + [mm] 4a^3 [/mm]

0 = [mm] -3a^4 [/mm] + [mm] 4a^3 [/mm] - 1

Wie geht es denn dann weiter? Und warum?

Würde mich über eure Hilfe echt sehr freuen!
Danke!

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:47 Mi 14.11.2007
Autor: Steffi21

Hallo, aus deiner Zeichnung ist bekannt, die gesuchte Gerade schneidet die gegebene Funktion im Wendepunkt,
- berechne die 2. Ableitung,
- setze 2. Ableitung gleich Null,
- du bekommst die Stelle [mm] x_w= [/mm] ... , an der der Wendepunkt liegt,
- berechne [mm] f(x_w). [/mm]
- du hast den Punkt [mm] (x_w; f(x_w) [/mm] und den Punkt (0; 1),
- mit diesen beiden Punkten ist es möglich, die Tangentengleichung zu bestimmen,

Steffi

Bezug
                
Bezug
Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Mi 14.11.2007
Autor: engel

Hallo!

Woher weiß ich, dass die tangier-stelle an der wendestelle ist? nur anhand des bildes?

ich habe jetzt raus, dass die wendestelle bei (1|-1) ist. Die Tangentengleichung lautet doch:

t(x) = f'(x0) *(x-x0) + f(x0)

setze ich da jetzt für x0 1 ein? und für y -1?

Weil dann bekomme ich doch keine Gleichung raus.

Irgendwie klappt es nicht.

Aber trotzdem schonmal tausend dank für deien Hilfe!

Bezug
                        
Bezug
Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mi 14.11.2007
Autor: Steffi21


> Hallo!
>  
> Woher weiß ich, dass die tangier-stelle an der wendestelle
> ist? nur anhand des bildes?

so ist es, in der Aufgabe steht ja nichts,

> ich habe jetzt raus, dass die wendestelle bei (1|-1) ist.

der Wendepunkt ist (1; -1)

> Aber trotzdem schonmal tausend dank für deien Hilfe!

bitte, bitte,

du hast jetzt 2 Punkte [mm] P_1(0; [/mm] 1) und [mm] P_2(1; [/mm] -1) die allgemeine Form der Gerade lautet y=m*x+n, setze die Punkte ein, du bekommst zwei Gleichungen und kannst somit beide Unbekannten m und n berechnen,

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]