www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenFunktion 3: Grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Steckbriefaufgaben" - Funktion 3: Grades
Funktion 3: Grades < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion 3: Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Mi 11.06.2008
Autor: schueler_sh

Aufgabe
Bestimme die Funktion 3. Grades deren Graph die x-Achse im Ursprung berührt und deren Tangente im P(-3/0) parallel zur Geraden = 6x ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Ich habe keine idee, wie ich die Aufgabe lösen soll und auch nicht wann man welche Ableitungen braucht.

[mm] f(x)=a3x^3+a2x^2+a1x+a0 [/mm]
[mm] f'(x)=3a3x^2+2a2x [/mm]
f''(x)=6a3x+2a2

        
Bezug
Funktion 3: Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Mi 11.06.2008
Autor: schachuzipus

Hallo schueler_sh und [willkommenmr]

> Bestimme die Funktion 3. Grades deren Graph die x-Achse im
> Ursprung berührt und deren Tangente im P(-3/0) parallel zur
> Geraden [mm] \red{y}= [/mm] 6x ist.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Ich habe keine idee, wie ich die Aufgabe lösen soll und
> auch nicht wann man welche Ableitungen braucht.
>  
> [mm]f(x)=a3x^3+a2x^2+a1x+a0[/mm] [ok]
>  [mm]f'(x)=3a3x^2+2a2x[/mm] [notok]
>  f''(x)=6a3x+2a2

Vorab: Indizes, die tiefstehen sollen, kriegst du mit dem Unterstrich hin, also so:

a_1 ergibt [mm] $a_1$ [/mm]

Also deine allg. Form der ganzrat. Funktion 3.Grades stimmt

[mm] $f(x)=a_3x^3+a_2x^2+a_1x+a_0$ [/mm]

Die 1. und 2. Ableitung musst du nochmal überprüfen, da haste direkt bei der ersten was verschlabbert...

Dann musst du die Bedingungen in der Aufgabenstellung "übersetzen":

(1) der Graph berührt im Ursprung (also im Punkt U=(0,0)) die x-Achse.

Das bedeutet $f(0)=0$ und $f'(0)=0$

(2) die Tangente im Punkt P=(-3/0) - das ist ein Punkt des Graphen, also $f(-3)=0$ - ist parallel zur Gerade $y=6x$

Was bedeutet denn parallel im Hinblick auf die Steigung?

Was ist also die Steigung von f im Punkt P=(-3,0)?

Überlege dir das mal, dann klappt das schon ...


LG

schachuzipus

Bezug
                
Bezug
Funktion 3: Grades: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:15 Mi 11.06.2008
Autor: schueler_sh

Also der Punkt (-3/0) und die steigung y=6x gehören zusammen und müssen in eine Ableitung oder?

Bezug
                        
Bezug
Funktion 3: Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Mi 11.06.2008
Autor: Martinius

Hallo,

> Also der Punkt (-3/0) und die steigung y=6x gehören
> zusammen und müssen in eine Ableitung oder?


Ja, genau.

$f(-3)=0$

$f'(-3)=6$


LG, Martinius


Bezug
                                
Bezug
Funktion 3: Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Mi 11.06.2008
Autor: schueler_sh

Ich habe ein teil der Aufgabe, weiß aber nicht mehr weiter.

I   [mm] f(3)=0=27a_3+9a_2-3a_1 [/mm]
II  [mm] f'(-3)=6=27a_3-6a_2+a_1 [/mm]
III f'(0)=0= [mm] a_1 [/mm]  

Bezug
                                        
Bezug
Funktion 3: Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mi 11.06.2008
Autor: schachuzipus

Hallo nochmal,

> Ich habe ein teil der Aufgabe, weiß aber nicht mehr
> weiter.
>  
> I   [mm]f(3)=0=27a_3+9a_2-3a_1[/mm]
>  II  [mm]f'(-3)=6=27a_3-6a_2+a_1[/mm] [ok]
>  III f'(0)=0= [mm]a_1[/mm]   [ok]

schon gar nicht schlecht, aber es muss bei (I) doch [mm] $f(\red{-}3)=-27a_3+9a_2-3a_1$ [/mm]

Mit (III) weißt du, dass [mm] $a_1=0$ [/mm] ist, das kannst du in (I) und (II) einsetzen.

Dann bekommst du:

(I'): $f(-3)=0$, also [mm] $-27a_3+9a_2=0$ [/mm]

(II'): $f'(-3)=6$, also [mm] $27a_3-6a_2=6$ [/mm]

Kannst du dieses Gleichungssystem nun lösen?

Addiere mal (I') auf (II') ...


Gruß

schachuzipus

Bezug
                                                
Bezug
Funktion 3: Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mi 11.06.2008
Autor: schueler_sh

So etwa:

I    [mm] f(-3)=0=-27a_3+9a_2-3a_1 [/mm]
II   [mm] f'(-3)=6=27a_3-6a_2+a_1 [/mm]

IV [mm] f'(-3)=6=0a_3+3a_2-2a_1 [/mm]

Bezug
                                                        
Bezug
Funktion 3: Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mi 11.06.2008
Autor: schachuzipus

Hallo nochmal,

mach's nicht zu unübersichtlich, es ist doch [mm] $a_1=0$ [/mm]

Damit haben wir die beiden Gleichungen

(I) [mm] $-27a_3+9a_2=0$ [/mm]

(II) [mm] $27a_3-6a_2=6$ [/mm]

Da addieren wir mal die erste auf die zweite Gleichung (linke Seite auf die linke Seite addieren, rechte Seite auf die rechte Seite), das gibt:

(I') [mm] $-27a_3+9a_2=0$ [/mm]

(II') [mm] $3a_2=6$ [/mm]

Da kannst du nun (II') nach [mm] $a_2$ [/mm] auflösen und dann [mm] $a_2$ [/mm] in (I') einsetzen, um [mm] $a_3$ [/mm] zu berechnen. Dann weißt du bereits, dass [mm] $a_0=a_1=0$ [/mm] ist

Welche Funktionsgleichung erhältst du dann? ..


LG

schachuzipus

Bezug
                                                                
Bezug
Funktion 3: Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mi 11.06.2008
Autor: schueler_sh

II' [mm] 3a_2=6 [/mm] |/3
II' [mm] a_2=3 [/mm]

dort weiß ich nicht mehr weiter
[mm] a_2 [/mm] in I'

Bezug
                                                                        
Bezug
Funktion 3: Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Mi 11.06.2008
Autor: schachuzipus

Hallo nochmal,

> II' [mm]3a_2=6[/mm] |/3
>  II' [mm]a_2=3[/mm]

Hmm, meines Erachtens ist [mm] $\frac{6}{3}=2$ [/mm] ;-)

Also kannst du [mm] $\red{a_2=2}$ [/mm] in die Gleichung (I') einsetzen

Also [mm] $-27a_3+9\red{a_2}=0$ [/mm]

[mm] $\gdw -27a_3+9\cdot{}\red{2}=0$ [/mm]

[mm] $\gdw -27a_3+18=0$ [/mm]

Also was ergibt sich damit für [mm] $a_3$ [/mm] ?

Dann hast du alle Unbekannten ermittelt und kannst die Funktionsgleichung komplett hinschreiben

>  
> dort weiß ich nicht mehr weiter
> [mm]a_2[/mm] in I'


LG


schachuzipus

Bezug
                                                                                
Bezug
Funktion 3: Grades: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Mi 11.06.2008
Autor: schueler_sh

für [mm] a_3 [/mm] ergibt sich dann:

[mm] -27a_3+18 [/mm]  |-18
[mm] -18=-27a_3 [/mm] |/(-18)
[mm] 0,6=a_3 [/mm]

dann ist [mm] f(x)=0,6x^3+2x^2 [/mm]

Bezug
                                                                                        
Bezug
Funktion 3: Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mi 11.06.2008
Autor: schachuzipus

Hallo nochmal,

> für [mm]a_3[/mm] ergibt sich dann:
>  
> [mm]-27a_3+18[/mm]  |-18
>   [mm]-18=-27a_3[/mm] |/(-18)
>   [mm]0,6=a_3[/mm]

bissl grob gerundet, schreib's doch als [mm] $a_3=\frac{2}{3}$ [/mm]

>  
> dann ist [mm]f(x)=\red{\frac{2}{3}}x^3+2x^2[/mm] [ok]


LG

schachuzipus  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]