Funktion auf ganz IR diff'bar? < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:00 So 31.01.2010 | Autor: | ChopSuey |
Aufgabe | Zeigen Sie, dass die folgende Funktion in jedem Punkt $\ x [mm] \in \IR [/mm] $ differenzierbar ist und berechnen Sie ihre Ableitung.
$\ f(x) = [mm] x^2e^{\sin(x)} [/mm] $ |
Hallo,
ich weiß nicht so recht, wie man zeigt, dass eine Funktion auf ganz $\ [mm] \IR [/mm] $ bzw auf dem ganzen Intervall, auf dem sie definiert ist, differenzierbar ist.
Ich dachte eine Möglichkeit wäre zu zeigen, dass der Differentialquotient für alle $\ x [mm] \in \IR [/mm] $ existiert. Wäre das denn richtig?
Alternativ hab' ich mir überlegt die erste Ableitung zu bilden um dann zu sehen, ob die erste Ableitung für alle $\ x [mm] \in \IR [/mm] $ definiert ist.
Kann mir jemand sagen, ob meine Ideen richtig sind und wenn ja, welche davon?
Die erste Ableitung ist :
$\ f'(x) = [mm] xe^{\sin(x)}(2 [/mm] + x [mm] \cos(x)) [/mm] $ und es ist $\ [mm] D_f [/mm] = [mm] \IR \Rightarrow [/mm] $ die Funktion ist auf ganz $\ [mm] \IR [/mm] $ differenzierbar ? Stimmt das?
Würde mich über Antworten freuen.
Grüße
ChopSuey
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:04 So 31.01.2010 | Autor: | leduart |
Hallo
über den Differentialquotienten wird das sehr länglich.
sonst kommt es drauf an, was ihr für Sätze schon hattet: Verkettung differenzierbarer fkt und Produkte diff. barer fkt sind wieder Diffb?
die müsstest du dann zitieren.
die Ableitung ist richtig.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:20 So 31.01.2010 | Autor: | ChopSuey |
Hallo Leduart,
danke für die schnelle Antwort.
> Hallo
> über den Differentialquotienten wird das sehr länglich.
> sonst kommt es drauf an, was ihr für Sätze schon hattet:
> Verkettung differenzierbarer fkt und Produkte diff. barer
> fkt sind wieder Diffb?
> die müsstest du dann zitieren.
Wir hatten beide Sätze schon, ja. Danke für den Hinweis.
In diesem Fall sei z.b. $\ g(x) = [mm] e^{\sin(x)}$ [/mm] und $\ h(x) = [mm] x^2$
[/mm]
Wenn ich zeigen möchte, dass beide Funktionen auf ganz $\ [mm] \IR [/mm] $ differenzierbar sind.. reicht es dann zu zeigen, dass die erste Ableitung jeder Funktion auf ganz $\ [mm] \IR [/mm] $ definiert ist?
Ich weiß noch nicht so recht, wie ich die Differenzierbarkeit auf das ganze Intervall "übertragen" kann.
Und impliziert "auf ganz $\ [mm] \IR [/mm] $ differenzierbar" auch $\ k$-fach Differenzierbar auf ganz $\ [mm] \IR [/mm] $ ?
Fragen über Fragen
> die Ableitung ist richtig.
> Gruss leduart
Grüße
ChopSuey
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:33 So 31.01.2010 | Autor: | SEcki |
> In diesem Fall sei z.b. [mm]\ g(x) = e^{\sin(x)}[/mm] und [mm]\ h(x) = x^2[/mm]
Das kann man weiterzerlegen, und hat dann die e-Funktion, den Sinus, und die Identität.
> Wenn ich zeigen möchte, dass beide Funktionen auf ganz [mm]\ \IR[/mm]
> differenzierbar sind.. reicht es dann zu zeigen, dass die
> erste Ableitung jeder Funktion auf ganz [mm]\ \IR[/mm] definiert
> ist?
Das ist tautologisch - was ist denn die erste Ableitung? die sagt ja in jedem Punkt was beim Differenzieren der Abbildung herauskommt ... oder was denkst du, was die erste Ableitung ist?
> Ich weiß noch nicht so recht, wie ich die
> Differenzierbarkeit auf das ganze Intervall "übertragen"
> kann.
In jedem Punkt gilt das halt. Wie meinst du das?
> Und impliziert "auf ganz [mm]\ \IR[/mm] differenzierbar" auch [mm]\ k[/mm]-fach
> Differenzierbar auf ganz [mm]\ \IR[/mm] ?
Nein.
SEcki
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:52 So 31.01.2010 | Autor: | ChopSuey |
Hallo SEcki,
was ich meine ist, dass ich nicht weiß, wie ich zeigen kann, dass eine Funktion in allen Punkten, auf denen sie definiert ist, differenzierbar ist.
Funktionen koennen doch sehr wohl in gewissen Punkten ihres Intervalls nicht differenzierbar und trozdem stetig sein.
Beispielsweise $\ f(x) = [mm] x^2 [/mm] $. Ich weiß natürlich, dass diese Funktion auf ganz $\ [mm] \IR [/mm] $ differenzierbar ist. Doch ich wäre mir nicht so ganz sicher, wie ich das auch beweisen soll.
Wie kann ich ausschliessen, dass es keinen Punkt $\ a $ gibt, in dem die Funktion nicht differenzierbar ist?
Gruß
ChopSuey
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:01 So 31.01.2010 | Autor: | SEcki |
> was ich meine ist, dass ich nicht weiß, wie ich zeigen
> kann, dass eine Funktion in allen Punkten, auf denen sie
> definiert ist, differenzierbar ist.
Wie dir bereist gesagt wurde, wird das gemacht! Entweder du nimmst dir ein beliebiges a im Def.bereich und zeigst, dass der Diff.quotient konvergiert. Oder aber du benutzt Sätze, dass die Verkettung, Produkt etc pp von diff.baren Funktionen diff.bar sind.
> Funktionen koennen doch sehr wohl in gewissen Punkten ihres
> Intervalls nicht differenzierbar und trozdem stetig sein.
Ja, und?
>
> Beispielsweise [mm]\ f(x) = x^2 [/mm]. Ich weiß natürlich, dass
> diese Funktion auf ganz [mm]\ \IR[/mm] differenzierbar ist. Doch ich
> wäre mir nicht so ganz sicher, wie ich das auch beweisen
> soll.
a) Produkt der Identität mit sich, b) direkt nachrechnen: [m]\lim_{x\to x_o} \bruch{x^2-x_0^2}{x-x_0}[/m] konvergiert für beliebiges [m]x_0\in\IR[/m].
> Wie kann ich ausschliessen, dass es keinen Punkt [mm]\ a[/mm] gibt,
> in dem die Funktion nicht differenzierbar ist?
Siehe oben.
SEcki
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:04 So 31.01.2010 | Autor: | ChopSuey |
Hallo SEcki,
jetzt verstehe ich's! Danke Euch vielmals.
Grüße
ChopSuey
|
|
|
|