Funktion im Betrag? < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 15:44 Sa 07.03.2009 | Autor: | hofmanpa |
Aufgabe | Für jedes [mm] t\in\IR* [/mm] ist eine Funktion [mm] f_{t} [/mm] gegeben durch
[mm] f_{t}(x)=(-t/240)*(x-10)^3+(t^{3}/20)*(x-10)+6, x\in\IR.
[/mm]
Ihr Schaubild ist [mm] K_{t}.
[/mm]
Die Gerade mit der Gleichung x=u mit 0<u<8 schneidet die x-Achse im Punkt Q und [mm] K_{4} [/mm] im Punkt P. Der Ursprung O(0|0) und die Punkte P und Q bilden ein Dreieck.
Bestimmen sie u so, dass das Dreieck OPQ den Flächeninhalt 15 hat. |
Ich habe die korrekte Lösungen [mm] u_{1}\approx2,72 [/mm] und [mm] u_{2}\approx6,43 [/mm] heraus bekommen. Die Werte stimmen mit den Vorgaben unseres Lehrers überein. Jedoch verstehe ich nicht ganz warum.
Die Fläche in diesem Fall habe ich so bestimmt:
15=1/2*u*|f(u)|
vorher hatte ich eine andere Lösung, da ich keine Betragsstriche verwendet habe. Als mein erster Ansatz falsch war, habe ich mir das Schaubild noch einmal angeschaut und gesehen, dass die Funktion im negativen Bereich liegt. Doch warum muss ich hier den Betrag verwenden? Kommt denn hier nicht einfach nur ein anderes Vorzeichen?
|
|
|
|
> Für jedes [mm]t\in\IR*[/mm] ist eine Funktion [mm]f_{t}[/mm] gegeben durch
> [mm]f_{t}(x)=(-t/240)*(x-10)^3+(t^{3}/20)*(x-10)+6, x\in\IR.[/mm]
>
> Ihr Schaubild ist [mm]K_{t}.[/mm]
>
> Die Gerade mit der Gleichung x=u mit 0<u<8 schneidet die
> x-Achse im Punkt Q und [mm]K_{4}[/mm] im Punkt P. Der Ursprung
> O(0|0) und die Punkte P und Q bilden ein Dreieck.
> Bestimmen sie u so, dass das Dreieck OPQ den Flächeninhalt
> 15 hat.
> Ich habe die korrekte Lösungen [mm]u_{1}\approx2,72[/mm] und
> [mm]u_{2}\approx6,43[/mm] heraus bekommen. Die Werte stimmen mit den
> Vorgaben unseres Lehrers überein. Jedoch verstehe ich nicht
> ganz warum.
>
> Die Fläche in diesem Fall habe ich so bestimmt:
>
> 15=1/2*u*|f(u)|
>
> vorher hatte ich eine andere Lösung, da ich keine
> Betragsstriche verwendet habe. Als mein erster Ansatz
> falsch war, habe ich mir das Schaubild noch einmal
> angeschaut und gesehen, dass die Funktion im negativen
> Bereich liegt. Doch warum muss ich hier den Betrag
> verwenden? Kommt denn hier nicht einfach nur ein anderes
> Vorzeichen?
Hallo,
wenn ich den Aufgabentext richtig verstehe, dürften sich die Inhalte "nur" um das Vorzeichen unterscheiden, da das Dreieck entweder komplett oberhalb oder komplett unterhalb der x-Achse liegt.
Den Betrag muß man nehmen, weil man die Längen der Strecken verwendet, und die sind nunmal positiv.
Wenn Du möchtest, daß wir Deiner Lösung bzw. der Lösung der Schule auf den Grund gehen, poste bitte die zugehörigen Rechnungen. Sonst müssen wir ja alles selbst rechnen.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:28 Sa 07.03.2009 | Autor: | hofmanpa |
Ich habe den gesamten Lösungsweg schon beschrieben.
Mein erster Ansatz war:
15 = 1/2 * u * [mm] f_{4}(u)
[/mm]
Das ganze nach u aufgelöst ergab: [mm] u_{1}\approx9,14 [/mm] und [mm] u_{2}\approx24,55
[/mm]
Erst nach Verwendung des Betrags für die Funktion [mm] f_{4}(u) [/mm] kamen die richtigen Lösungen, zu den oberen hinzu. Ein Vorzeichenwechsel ist in keiner der Ergebnisse, egal nach welchem Schema, vorhanden.
|
|
|
|
|
> Ich habe den gesamten Lösungsweg schon beschrieben.
Hallo,
aber nicht gerechnet.
Ich glaube jedoch, ich erkenne jetzt Dein Problem richtig:
wenn Du mit f(u), 0<u<8 rechnest, ist Dein f negativ, Dein u positiv, so daß Du beim Multiplizieren nur einen negativen Wert bekommen kannst.
Du müßtest in diesem Fall also, wolltest Du den Betrag umgehen, -15= [mm] \bruch{1}{2}u* [/mm] f(u) lösen.
Löst Du 15= [mm] \bruch{1}{2}u* [/mm] f(u), hat das mit dem Dreieck, welches zur Debatte steht, nichts mehr zu tun.
Du suchst dan einfach das Dreieck mit den Eckpunkten (0,0), (u, 0) (0,f(u)), für welches der Inhalt =15 ist, und die Tatsache, daß 15 positiv ist, bedingt, daß überhaupt nur solche u herauspurzeln können, für die u und f(u) beide pos. oder beide neg. sind.
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 Sa 07.03.2009 | Autor: | hofmanpa |
Ja, direkt rechnen tun wir so etwas nicht mehr. Das lassen wir alles unseren GTR lösen.
Aber danke, ich habe jetzt verstanden weshalb!
|
|
|
|
|
> Ja, direkt rechnen tun wir so etwas nicht mehr. Das lassen
> wir alles unseren GTR lösen.
Achso. So modern bin ich nicht, aber ich hatte mich schon über Eure Rechenkünste gewundert.
Gruß v. Angela
>
> Aber danke, ich habe jetzt verstanden weshalb!
|
|
|
|