www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitFunktion und Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Funktion und Stetigkeit
Funktion und Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion und Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 So 16.12.2007
Autor: Schneckal36

Aufgabe
Bestimmen sie den Parameter [mm] a\in\IR [/mm] jeweils so, dass die Funktion auf [mm] \IR [/mm] stetig wird:

[mm] f_{1}(x)=\begin{cases} 3x+1, & \mbox{für } x \mbox{kleinergleich2} \\ -2x+a, & \mbox{für } x \mbox{>2} \end{cases} [/mm]

[mm] f_{2}(x)=\begin{cases} 4x+2, & \mbox{für } x \mbox{ kleinergleich1} \\ a^{2}/2*x+a+2, & \mbox{für } x \mbox{ >1} \end{cases} [/mm]

Hallo, ich hab keine Ahnung wie ich an die Aufgabe rangehen soll geschweige denn wie man sowas rechnet!
Vielleicht könnt ihr mir helfen!


Ich habe diese Frage in kein anderes Forum gestellt

        
Bezug
Funktion und Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 16.12.2007
Autor: Somebody


> Bestimmen sie den Parameter [mm]a\in\IR[/mm] jeweils so, dass die
> Funktion auf [mm]\IR[/mm] stetig wird:
>  
> [mm]f_{1}(x)=\begin{cases} 3x+1, & \mbox{für } x \mbox{kleinergleich2} \\ -2x+a, & \mbox{für } x \mbox{>2} \end{cases}[/mm]
>  
> [mm]f_{2}(x)=\begin{cases} 4x+2, & \mbox{für } x \mbox{ kleinergleich1} \\ a^{2}/2*x+a+2, & \mbox{für } x \mbox{ >1} \end{cases}[/mm]
>  
> Hallo, ich hab keine Ahnung wie ich an die Aufgabe rangehen
> soll geschweige denn wie man sowas rechnet!
>  Vielleicht könnt ihr mir helfen!
>  

Zu [mm] $f_1(x)$. [/mm] Die Funktion [mm] $x\mapsto [/mm] 3x+1$ ist ja für alle $x$ stetig. Genauso ist (für alle $a$) die Funktion [mm] $x\mapsto [/mm] -2x+a$ für alle $x$ stetig. Problematisch ist daher einzig die Stelle $x=2$, bei der in der Definition von [mm] $f_1(x)$ [/mm] vom einen (für alle $x$ stetigen) Funktionsterm zum anderen (für alle $x$ stetigen) Funktionsterm gewechselt wird. Daher ist [mm] $f_1(x)$ [/mm] genau dann stetig, wenn $a$ so gewählt wird, dass die beiden Funktionsterme an der Stellle $x=2$ denselben Wert haben.

Man könnte es auch so ausdrücken: [mm] $f_1(x)$ [/mm] ist an der einzig problematischen Stelle $x=2$ genau dann stetig, wenn gilt:

[mm]f_1(2)=\lim_{x\rightarrow 2-}f_1(x)=\lim_{x\rightarrow 2+}f_1(x)[/mm]


Dabei ist aber, wegen der erwähnten Stetigkeit des ersten bzw. zweiten Funktionsterms in der Definition von [mm] $f_1(x)$ [/mm]

[mm]\lim_{x\rightarrow 2-}f_1(x)=\lim_{x\rightarrow 2-}\left(3x+1\right)=3\cdot 2+1=7[/mm]

bzw.

[mm]\lim_{x\rightarrow 2+}f_1(x)=\lim_{x\rightarrow 2+}\left(-2x+a)=-2\cdot 2+a=a-4[/mm]


Also muss $7=a-4$, d.h. $a=11$ sein.

Zu [mm] $f_2(x)$: [/mm] Analoges Vorgehen wie bei [mm] $f_1(x)$. [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]