Funktionaldeterminante < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:50 Mo 14.08.2006 | Autor: | fisch000 |
Aufgabe | f(x,y,z) = ( z*cos(xy), z*sin(xy), x)
Wo verschwindet die Funktionaldeterminante dieser Abbildung ? |
Hi Leute,
ich hoffe da sich im richtigen Forum bin. War mir nämlich nicht sicher ob das ganze zu Analysis oder lineare Algebra gehört wegen Determinanten. Bitte um entschuldigung falls ich hier falsch bin.
[mm] \pmat{ -z*sin(y) & -z*sin(x) & cos(xy) \\ z*cos(y) & z*cos(x) & sin(xy) }
[/mm]
1 0 0
Hab hiermal die Funktionalmatrix aufgestellt, hatte aber probleme eine 3x3 Matrix zu erstellen, müsste aber trotzdem erkenntlich sein was ich hingeschrieben habe. Nun meine Frage: Da ich lineare Algebra noch nicht gehört habe weiß ich nicht wie man die Determinante einer 3x3 Matrix berechnet, könnte mir das jemand anhand dieser Aufgabe kurz erklären ? Und was wird mit dem verschwinden der Determinante gemeint ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:59 Mo 14.08.2006 | Autor: | felixf |
Hallo!
> f(x,y,z) = ( z*cos(xy), z*sin(xy), x)
> Wo verschwindet die Funktionaldeterminante dieser
> Abbildung ?
> Hi Leute,
> ich hoffe da sich im richtigen Forum bin. War mir nämlich
> nicht sicher ob das ganze zu Analysis oder lineare Algebra
> gehört wegen Determinanten. Bitte um entschuldigung falls
> ich hier falsch bin.
> [mm]\pmat{ -z*sin(y) & -z*sin(x) & cos(xy) \\ z*cos(y) & z*cos(x) & sin(xy) \\ 1 & 0 & 0 }[/mm]
>
> Hab hiermal die Funktionalmatrix aufgestellt, hatte aber
> probleme eine 3x3 Matrix zu erstellen, müsste aber trotzdem
> erkenntlich sein was ich hingeschrieben habe. Nun meine
> Frage: Da ich lineare Algebra noch nicht gehört habe weiß
> ich nicht wie man die Determinante einer 3x3 Matrix
> berechnet, könnte mir das jemand anhand dieser Aufgabe kurz
> erklären ?
Schau doch mal hier.
In deinem Fall ist die Determinante gleich $(-z [mm] \sin [/mm] x) [mm] (\sin(xy)) [/mm] - (z [mm] \cos x)(\cos(xy))$. [/mm] Versuch das mal nachzurechnen.
> Und was wird mit dem verschwinden der
> Determinante gemeint ?
Du sollst die Tripel $(x, y, z)$ bestimmen, fuer die die Determinante gleich 0 ist. (Wenn eine Funktion 0 ist sagt man dazu auch, das sie verschwindet.)
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:07 Mo 14.08.2006 | Autor: | fisch000 |
Ok das berechnen der Determinante ist jetzt kein Problem mehr, wahr ja auch nich so schwer. Aber die Berechnung von x, y und z macht mir noch Probleme, vor allem wegen dem sin und cos, hättest du vlt. einen tip für mich. Wäre echt nett von dir
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:23 Mo 14.08.2006 | Autor: | felixf |
Hallo!
> Ok das berechnen der Determinante ist jetzt kein Problem
> mehr, wahr ja auch nich so schwer. Aber die Berechnung von
> x, y und z macht mir noch Probleme, vor allem wegen dem sin
> und cos, hättest du vlt. einen tip für mich. Wäre echt nett
> von dir
Mal schaun. *etwasrumrechne* Ich sehe grad, das deine Funktionalmatrix falsch ist! Es ist [mm] $\frac{\partial f}{\partial x} [/mm] = (-zy [mm] \sin(xy), [/mm] zy [mm] \cos(xy), [/mm] 1)$, [mm] $\frac{\partial f}{\partial y} [/mm] = (-zx [mm] \sin(xy), [/mm] zx [mm] \cos(xy), [/mm] 0)$, [mm] $\frac{\partial f}{\partial z} [/mm] = [mm] (\cos(xy), \sin(xy), [/mm] 0)$.
Damit ist die Funktionaldeterminante gleich $-zx [mm] (\sin [/mm] xy) [mm] (\sin [/mm] xy) - zx [mm] (\cos [/mm] xy) [mm] (\cos [/mm] xy) = -zx [mm] ((\sin xy)^2 [/mm] + [mm] (\cos xy)^2) [/mm] = -zx$, da [mm] $(\sin \alpha)^2 [/mm] + [mm] (\cos \alpha)^2 [/mm] = 1$ ist fuer alle [mm] $\alpha \in \IR$. [/mm] Die Determinante ist also $-zx$, und wo die verschwindet, das solltest du schnell selber rausfinden koennen
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:31 Mo 14.08.2006 | Autor: | fisch000 |
Verschwinden müsste sie ja dann bei (0,1) oder (1,0) oder (0,0). Oder hab ich das etwa falsch verstanden mit dem verschwinden. Im Prinzip muss -zx ja 0 ergeben und dafür gibts ja mehrere Kombinationen die ich oben geschrieben habe
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:50 Mo 14.08.2006 | Autor: | ardik |
Hallo fisch,
prinzipiell ok, aber es müsste freilich (0, y, 1) etc. heißen.
Schöne Grüße,
ardik
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:56 Mo 14.08.2006 | Autor: | fisch000 |
Danke jetzt hab ich alles verstanden. Ich liebe diese Forum
|
|
|
|