www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionenfolgen Punktweise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Funktionenfolgen Punktweise
Funktionenfolgen Punktweise < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenfolgen Punktweise: Eigenschaften erhalten?
Status: (Frage) beantwortet Status 
Datum: 22:32 Fr 11.05.2007
Autor: mathmetzsch

Aufgabe
Wieder seien die [mm] f_{n} [/mm] und f Funktionen von [mm] \IR [/mm] nach [mm] \IR. [/mm] Die [mm] f_{n} [/mm] sollen punktweise gegen f konvergieren. Welche der folgenden Aussagen sind richtig (Beweis!), welche falsch (Gegenbeispiel!)?

a) Gilt [mm] f_{n}(1) [/mm] + [mm] 12f_{n}(17) [/mm] = 3 für alle n, so ist auch f(1) + 12f(17) = 3.
b) Gilt [mm] \wurzel[12]{f_{n}^{4}(1)+2}\le f_{n}(170) [/mm] für alle n, so ist auch [mm] \wurzel[12]{f^{4}(1)+2}\le [/mm] f(170)
c) Sind alle [mm] f_{n} [/mm] beschränkt, so auch f.
d) Gilt [mm] f_{n}^{2}(10) [/mm] > −0.0001 für alle n, so ist auch [mm] f^{2}(10) [/mm] > −0.0001.

Hallochen,

ich hab so meine Problemchen mit dieser AUfgabe. Ich versuch es mal:

a) Die Aussage stimmt. Sieht man durch Anwendung der Grenzwertsätze für Folgen.
b) Ich vermute, dass das nicht stimmt. Ich hab schon mind. 2 h nach einem Gegenbeispiel gesucht, aber leider keins gefunden. Wer weiß eins oder belehrt mich eines besseren?
c) Stimmt, so vermute ich. Punktweise Konvergenz muss ja für alle x gelten und wenn [mm] f_{n} [/mm] gegen f konvergiert, dann ist [mm] f_{n} [/mm] beschränkt, nämlich durch f, und f auch. Oder nicht?
d) Das gilt, würde ich sagen, kann das aber nicht begründen!

Kann mir bitte jemand helfen? Ich weiß nicht so recht weiter!

Danke vielmals, Grüße
Daniel

        
Bezug
Funktionenfolgen Punktweise: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Fr 11.05.2007
Autor: leduart

Hallo
nur zu d) für jedes f gilt [mm] f^2>-0,001 [/mm] das hat nicht mal was mit Konvergenz zu tun, ist also nur ne Fangfrage!
Gruss leduart

Bezug
        
Bezug
Funktionenfolgen Punktweise: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Sa 12.05.2007
Autor: MatthiasKr

Hi,
> Wieder seien die [mm]f_{n}[/mm] und f Funktionen von [mm]\IR[/mm] nach [mm]\IR.[/mm]
> Die [mm]f_{n}[/mm] sollen punktweise gegen f konvergieren. Welche
> der folgenden Aussagen sind richtig (Beweis!), welche
> falsch (Gegenbeispiel!)?
>  
> a) Gilt [mm]f_{n}(1)[/mm] + [mm]12f_{n}(17)[/mm] = 3 für alle n, so ist auch
> f(1) + 12f(17) = 3.
>  b) Gilt [mm]\wurzel[12]{f_{n}^{4}(1)+2}\le f_{n}(170)[/mm] für alle
> n, so ist auch [mm]\wurzel[12]{f^{4}(1)+2}\le[/mm] f(170)
> c) Sind alle [mm]f_{n}[/mm] beschränkt, so auch f.
>  d) Gilt [mm]f_{n}^{2}(10)[/mm] > −0.0001 für alle n, so ist

> auch [mm]f^{2}(10)[/mm] > −0.0001.
>  
> Hallochen,
>  
> ich hab so meine Problemchen mit dieser AUfgabe. Ich
> versuch es mal:
>  
> a) Die Aussage stimmt. Sieht man durch Anwendung der
> Grenzwertsätze für Folgen.

ja.

>  b) Ich vermute, dass das nicht stimmt. Ich hab schon mind.
> 2 h nach einem Gegenbeispiel gesucht, aber leider keins
> gefunden. Wer weiß eins oder belehrt mich eines besseren?

sollte eigentlich wie a) stimmen. siehe grenzwertsätze.

>  c) Stimmt, so vermute ich. Punktweise Konvergenz muss ja
> für alle x gelten und wenn [mm]f_{n}[/mm] gegen f konvergiert, dann
> ist [mm]f_{n}[/mm] beschränkt, nämlich durch f, und f auch. Oder
> nicht?

nein, bestimmt nicht. nimm zB. [mm] $f(x)=x^2$ [/mm] und [mm] $f_n(x)=x^2\cdot\chi_{[-n,n]}$, [/mm] also die abgeschnittene funktion.

>  d) Das gilt, würde ich sagen, kann das aber nicht
> begründen!

siehe leduart... ;-)

>  
> Kann mir bitte jemand helfen? Ich weiß nicht so recht
> weiter!
>  
> Danke vielmals, Grüße
>  Daniel  

VG
Matthias

Bezug
        
Bezug
Funktionenfolgen Punktweise: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Sa 12.05.2007
Autor: mathmetzsch

Hallochen,

vielen Dank euch beiden! Jetzt ist mir das klar!

Grüße, Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]