www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFunktionenschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Funktionenschar
Funktionenschar < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 Do 24.11.2005
Autor: natali

Ich habe da ein rpoblem bei der lösung dieser aufgabe:

Für k>0 ist die funktion Fk gegeben durch [mm] fk(x)=-1/3*x^3+k*x. [/mm] Bestimme k so, dass die Normale im Wendepunkt des Graphen von fk mit dem Graphen von fk eine Fläche vom Flächeninhalt 6 einschließt.

Ich weiß dass der Wendepunkt (0|0) ist mehr abre auch nicht. und ehrlich gesagt weiss ich nicht recht wie man bei dieser aufgabe vorgehen soll... bitte hilfe :(

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Funktionenschar: Steigung
Status: (Antwort) fertig Status 
Datum: 21:36 Do 24.11.2005
Autor: MathePower

Hallo natali,

[willkommenmr]

> Ich habe da ein rpoblem bei der lösung dieser aufgabe:
>  
> Für k>0 ist die funktion Fk gegeben durch
> [mm]fk(x)=-1/3*x^3+k*x.[/mm] Bestimme k so, dass die Normale im
> Wendepunkt des Graphen von fk mit dem Graphen von fk eine
> Fläche vom Flächeninhalt 6 einschließt.
>  
> Ich weiß dass der Wendepunkt (0|0) ist mehr abre auch
> nicht. und ehrlich gesagt weiss ich nicht recht wie man bei
> dieser aufgabe vorgehen soll... bitte hilfe :(

berechne zunächst die Steigung der Tangente im Wendepunkt, also [mm] \;f_{k}^{'} \left( 0 \right)[/mm].

Für zwei Geraden im [mm]\IR^{2}[/mm], die aufeinander senkrecht stehen sollen, gilt

[mm]m_A \; \times m_B \; = \; - 1[/mm]

,wobei hier
[mm]m_{A}[/mm] die Steigung der Tangente und [mm]m_{B}[/mm] die Steigung der Normalen im Punkt (0|0) ist.

Berechne dann die Geradengleichung der Normalen:

[mm] \frac{{y\; - \;f_k \left( 0 \right)}} {{x\; - \;0}}\; = \;m_B \; = \; - \;\frac{1} {{f_{k}^{'} (0)}}[/mm]

Um die Integrationsgrenzen festzulegen schneide [mm] {f_k \left( x \right)}[/mm] mit der soeben erhaltenen Geradengleichung.

Beachte hier, daß es 3 Schnittpunkte gibt.

Integriere dann die Differenz zwischen [mm] {f_k \left( x \right)}[/mm] und der Geradengleichung der Normalen.

Gruß
MathePower

Bezug
                
Bezug
Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Do 24.11.2005
Autor: natali

hmm.. wie berechnet man die steigung der tangente nochmal?
rgendwie komm ich mit der aufgabe nicht klar..

Bezug
                        
Bezug
Funktionenschar: Steigung = 1. Ableitung
Status: (Antwort) fertig Status 
Datum: 21:56 Do 24.11.2005
Autor: Loddar

Hallo Natali!


Die Steigung einer Funktion an beliebiger Stelle wird angegeben durch die Steigung der Tangente an dem betrachtetem Punkt.

Und diese Steigung erhalten wir mit der 1. Ableitung der Funktion $f'(x)_$.


Nun klar(er) ?


Gruß
Loddar


Bezug
                                
Bezug
Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 24.11.2005
Autor: natali

ohmm...
ich verzweifele :(

also zuerst rechne ich die steigung der tangente aus?
das wäre f'(0)= k
so danach muss ich ja die steigung der normalen ausrechnen:
und wie mach ich das ?

ich habe ziemliche lücken in mathematik :(
danach muss ich die gleichung der normalen ausrechnen und mit der funktion fk(x) gleichsetzen oder?
danach die nullstellen der funktion berechnen (in diesem falle denke ich 3 NST) soweit so gut ?? oder liege ich falsch ?

Bezug
                                        
Bezug
Funktionenschar: genau lesen!
Status: (Antwort) fertig Status 
Datum: 01:37 Fr 25.11.2005
Autor: leduart

Hallo Natali
Lies noch mal den Beitrag von mathepower. da steht die Antwort auf deine Fragen. Aber lies wirklich, und frag, was du daran nicht verstanden hast. Das aufzuschreiben hilft manchmal schon zum Verstehen.
Gruss leduart

Bezug
                                                
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Fr 25.11.2005
Autor: natali

ich wollte mich nochmal bei euch allen für eure antowrten bedanken!!!
Ich hab die aufgabe verstanden und richtig gelöst--- nach langem überlegen!!!! :) danke vielmals das war alles so so verständlich !!!! !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]