www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenFunktionsbestimmung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Funktionsbestimmung
Funktionsbestimmung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 09.10.2007
Autor: nordii

Aufgabe
gegebene Funktion: f(x) =  [mm] \bruch{ax² + bx + c}{x}[/mm]
Er besitzt den Punkt P (1|2) und hat die erste Winkelhalbierende als schiefe Asymptote im 1. Quadraten.
gesucht: a,b,c [mm] \in \IR [/mm]                    

Ich habe es soweit geschafft das "a" zu bestimmen, denn das ist 1, da die schiefe Asymptote y=x ist und somit die Steigung 1 hat. und die Steigung ist ja gleich dem Koeffizienten vor dem x mit der höchsten Potenz...
Naja desweiteren habe ich die Gleichung f(1)=2
ich habe 2 unbekannte nur noch, aber nur eine gleichung.
also fehlt noch eine,
ich habe angefangen mit [mm]\limes_{x \to \infty}f(x) [/mm] = x oder auch [mm]\limes_{x \to \infty}f(x) - x = 0 [/mm]
doch komme nun nicht mehr weiter bzw komme nicht auf die letzte fehlende gleichung...
Kann mit jemand helfen, Lösungsweg weitersagen, oder Rat geben?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsbestimmung: Tipp
Status: (Antwort) fertig Status 
Datum: 18:08 Di 09.10.2007
Autor: Loddar

Hallo nordii!


Formen wir die Funktion mal etwas um zu:
$$f(x) \ = \ [mm] \bruch{a*x^2 + b*x + c}{x} [/mm] \ = \ [mm] \bruch{a*x^2}{x}+\bruch{b*x}{x}+\bruch{c}{x} [/mm] \ = \ [mm] a*x+b+\bruch{c}{x}$$ [/mm]

Damit die schiefe Asymptote [mm] $y_A [/mm] \ = \ x \ = \ 1*x+0$ lauten kann ... was muss also für die beiden Parameter $a_$ und $b_$ gelten?


Gruß
Loddar


Bezug
                
Bezug
Funktionsbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Di 09.10.2007
Autor: nordii

ja das hatte ich auch schon im kopf, den term so zu kürzen
und durch anschauung von ein paar graphen, habe ich beschlossen dass b=0 ist ;) aber warum bzw ob es so nun wirklich es, weiß ich nicht,
ich komme nun einfach nicht weiter  =(

Bezug
                        
Bezug
Funktionsbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Di 09.10.2007
Autor: nordii

ah moment, also a wie gesagt ist 1 und b dann 0, hab mir es aber logisch erdacht, nur wie kann man es mathemathisch formal aufschreiben?
und was ist mit c?

Bezug
                                
Bezug
Funktionsbestimmung: zum c
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Di 09.10.2007
Autor: Loddar

Hallo nordii!


Das $c_$ berechnest Du dann duch die Angabe des Punktes in $f(x) \ = \ [mm] 1*x+0+\bruch{c}{x} [/mm] \ = \ [mm] x+\bruch{c}{x}$ [/mm] :

$$f(1) \ = \ [mm] 1+\bruch{c}{1} [/mm] \ = \ 2$$

Gruß
Loddar


Bezug
                        
Bezug
Funktionsbestimmung: Grenzwertbetrachtung
Status: (Antwort) fertig Status 
Datum: 18:52 Di 09.10.2007
Autor: Loddar

Hallo nordii!


Dein Ansatz mit $a \ = \ 1$ und $b \ = \ 0$ ist völlig richtig. Mach doch mal die Grenzwertbetrachtung für [mm] $x\rightarrow\pm\infty$ [/mm] :

[mm] $$\limes_{x\rightarrow\pm\infty}f(x) [/mm] \ = \ [mm] \limes_{x\rightarrow\pm\infty}\left(a*x+b+\bruch{c}{x}\right) [/mm] \ = \ a*x+b$$

Dies kann sich nur dann der ganannten Asymptote [mm] $y_A [/mm] \ = \ x$ annähern, wenn gilt:
[mm] $$y_A [/mm] \ = \ x \ = \ [mm] \red{1}*x+\blue{0} [/mm] \ = \ [mm] \red{a}*x+\blue{b}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Funktionsbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Di 09.10.2007
Autor: nordii

aaah ;) ich sollte mir mal die farben angucken, die du genommen hast ;)
okay gut ich habs nun gerallt ;) dankeschön für deine gute erklärung :)

ich hab nun für c den wert 1 raus, aufgrund f(1)=2
die funktion heißt dann: f(x) = [mm]\bruch{x²+1}{x}[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]