www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionsdefinition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Funktionsdefinition
Funktionsdefinition < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsdefinition: Verständnishilfe
Status: (Frage) beantwortet Status 
Datum: 08:06 Do 25.06.2009
Autor: dmy

Aufgabe
Es handelt sich hier nicht um eine Aufgabenstellung sondern um ein Teil von meinem Skript den ich nicht verstehe:
Wir betrachten für k=1,2,... die Treppenfunktionen [mm] f_k:\mathbb{R}\to\mathbb{R} [/mm] mit [mm] f_k(x):=\begin{cases}\left(\frac{2^k}{v+1}\right)^2\mbox{ für } \frac{v}{2^k}\le x\le \frac{v+1}{2^k}\text{ und } v=2^k,...,4^k-1\\0, \text{sonst}\end{cases}. [/mm]

Dann ist [mm] (f_k) [/mm] monoton wachsend (machen Sie sich dies bitte klar!), und...

So, mir ist ehrlich gesagt überhaupt nicht klar was mir diese Funktionsdefinition sagen soll. Wäre da nicht dass v wär ja alles klar aber was hat es nun damit aufsich?

Ist der Funktionswert gleich [mm] \left(\frac{2^k}{v+1}\right)^2 [/mm] wenn es ein v [mm] \in [2^k, 4^k-1] [/mm] gibt so dass [mm] \frac{v}{2^k}\le x\le \frac{v+1}{2^k} [/mm] gilt und 0 wenn es kein solches v gibt?
Aber selbst wenn dies so gemeint ist, wäre der Funktionswert dann nicht auch davon abhängig welches v man gerade wählt? Eindeutig scheint dies ja nicht zu sein...

Für einen Hinweis was es damit aufsich hat wäre ich dankbar!

Ich habe diese Frage auf keiner anderen Webseite gestellt...!

        
Bezug
Funktionsdefinition: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Fr 26.06.2009
Autor: Leopold_Gast

Setze für [mm]k=1,2,3,\ldots[/mm]

[mm]g_k(x) = \left( \frac{1}{x+2^{-k}} \right)^2 \, , \ \ h(x) = \left( \frac{1}{x} \right)^2 \ \ \mbox{für} \ \ x \in I_k = \left[ 1 \, , \, 2^k \right][/mm]

und zeichne die Graphen von [mm]g_k[/mm] und [mm]h[/mm].

Jetzt teile [mm]I_k[/mm] in [mm]2^k (2^k - 1)[/mm] gleiche Teile und zeichne über jedem Teilintervall eine waagerechte Strecke, die beim Graphen von [mm]g_k[/mm] beginnt und beim Graphen von [mm]h[/mm] endet. Diese Strecken bestimmen dir den Graphen der Funktion [mm]f_k[/mm]. Außerhalb von [mm]I_k[/mm] verschwindet [mm]f_k[/mm]. In den Endpunkten der Strecken muß der Funktionswert von [mm]f_k[/mm] noch eindeutig festgelegt werden. Da scheint mir in der Angabe ein Fehler zu sein. Es sollte dort entweder [mm]\frac{\nu}{2^k} \leq x < \frac{\nu + 1}{2^k}[/mm] oder [mm]\frac{\nu}{2^k} < x \leq \frac{\nu + 1}{2^k}[/mm] heißen.

Übrigens: Hier ist sicher [mm]\nu[/mm] (griechischer Buchstabe "ny" als Index zur Numerierung der Teilintervalle) und nicht [mm]v[/mm] gemeint.

Das Bild zeigt den Fall [mm]k=2[/mm].

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]