www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFunktionsgleichheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Funktionsgleichheit
Funktionsgleichheit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsgleichheit: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:20 Sa 21.01.2012
Autor: hubbel

Aufgabe
http://www.myimg.de/?img=blatt119fe30.jpg


Habe ein Problem zu zeigen, dass diese Gleichung gilt. Mir wurde als Tipp gegeben, ich solle f'(x)=1-1/x bilden, verstehe aber nicht, inwiefern mir das hilft. Die Gleichheit des ganzen zeige ich ja, indem ich die Nullstelle berechne oder?

        
Bezug
Funktionsgleichheit: Besser Abtippen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Sa 21.01.2012
Autor: Diophant

Hallo hubbel,

öhm, weshalb hast du das nicht einfach abgetippt, es ist ja nicht abendfüllend? :-)
Dann hättest du vermutlich selbst gesehen, dass es nicht um eine Gleichung sondern um eine Ungleichung geht...

Gruß, Diophant



Bezug
                
Bezug
Funktionsgleichheit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:56 Sa 21.01.2012
Autor: hubbel

Sorry, ich meine natürlich Ungleichung. Die Stelle zuzuzeigen wo sie gleich sind ist ja eine Gleichung, weiß aber nicht, wie ich die Ungleichung beweisen kann.

Bezug
                        
Bezug
Funktionsgleichheit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 23.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Funktionsgleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Sa 21.01.2012
Autor: M.Rex

Hallo

Was kannst du denn über die Monotonie der Funktion [mm] f(x)=x-e\cdot\ln(x) [/mm] aussagen?

Marius


Bezug
                
Bezug
Funktionsgleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 21.01.2012
Autor: hubbel

Moment, das stimmt so nicht.

Also die Ableitung ist ja 1-e/x. Da kann ich doch gar keine Aussage treffen oder? Für x=1 wäre f'(x) z.B. kleiner als 0, bei x=10 z.B. aber größer als 0 oder?

Bezug
                        
Bezug
Funktionsgleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 23.01.2012
Autor: schachuzipus

Hallo hubbel,


> Moment, das stimmt so nicht.
>  
> Also die Ableitung ist ja 1-e/x. [ok]Da kann ich doch gar keine
> Aussage treffen oder?


Wieso nicht? Die Funktion [mm] $f(x)=x-e\cdot{}\ln(x)$ [/mm] ist nur für $x>0$ definiert.

Schaue doch erstmal, wo $f'(x)=0$ gilt ...

> Für x=1 wäre f'(x) z.B. kleiner als
> 0, bei x=10 z.B. aber größer als 0 oder?

Ja, wo ist die "Nahtstelle" ?

Ist dir klar geworden, wie deine ursprüngliche Ungleichung mit der Funktion $f$ zusammenhängt und warum du die im Hinweis stehende Funktion betrachten sollst?


Gruß

schachuzipus




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]