www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFunktionsschar-Ermittlung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Funktionsschar-Ermittlung
Funktionsschar-Ermittlung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar-Ermittlung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Di 06.01.2009
Autor: myrror

Aufgabe
Es sei [mm] f_t [/mm] eine ganzrationale Funktion 3. Grades. Das Schaubild [mm] K_t [/mm] von [mm] f_t [/mm] berührt die x-Achse im Ursprung und hat in [mm] N_t [/mm] (2t/0) mit t>0 eine Tangente mit der Steigung -4.
Ermittle [mm] f_t(x). [/mm]
[ Untersuche die Funktionsschar auf Hoch-, Tief- und Wendepunkte. ]

Ich habe mich mit dieser Aufgabe beschäftigt und bin nur auf die folgenden Bedingungen gekommen, um die Funktionsschar zu bestimmen:

[mm] f_t(0) [/mm] = 0
[mm] f_t(2t) [/mm] = 0
[mm] f_t'(2t) [/mm] = -4

D.h., dass in der Grundform der Funktionsschar [mm] f_t(x) [/mm] = [mm] ax^3 [/mm] + [mm] bx^2 [/mm] + cx +d
der Buchstabe d gleich Null ist.

Meine Frage ist nun: Sind meine Bedingungen erst mal so weit korrekt und wie komme ich zur fehlenden Bedingung, um die restlichen Buchstaben zu bestimmen?

Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionsschar-Ermittlung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Di 06.01.2009
Autor: Steffi21

Hallo,

[mm] f_t(0)=0 [/mm] korrekt, daraus folgt: d= ...

[mm] f_t(2t)0=0 [/mm] korrekt

[mm] f_t'(2t)=-4 [/mm] korrekt

dir fehlt noch die Gleichung aus der Aussage: [mm] "f_t [/mm]  berührt die x-Achse im Ursprung", das bedeutet, im Ursprung liegt ein Minimum oder Maximum vor, also hast du an der Stelle x=0 einen Extrempunkt, aus dieser Aussage wirst du sofort c= ... erhalten,

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]