www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFunktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Funktionsschar
Funktionsschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar: Asymptoten
Status: (Frage) beantwortet Status 
Datum: 11:37 Do 02.01.2014
Autor: begker1

Aufgabe
Aufgabe: Für jedes t>0 ist eine Funktion ft gegeben durch ft(x) = [mm] 4e^{tx} [/mm] – [mm] e^{2tx} [/mm] . Das Schaubild der Funktion sei Kt.
Untersuche  Kt auf Schnittpunkte mit der x-Achse, Hoch- und Tiefpunkte und Wendepunkte sowie Asymptoten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Lösung: Folgende Werte habe ich errechnet:
Sx     ( (ln4)/t ; 0)
HP ( (ln2)/t ; 4)
WP ( 0;3)
Wie aber kann ich denn nun aus diesen Informationen die Asymptoten ableiten?

        
Bezug
Funktionsschar: Grenzwertbetrachtung
Status: (Antwort) fertig Status 
Datum: 11:54 Do 02.01.2014
Autor: Loddar

Hallo begker!


> Folgende Werte habe ich errechnet:
> Sx ( (ln4)/t ; 0)

[ok]


> HP ( (ln2)/t ; 4)

[ok]


> WP ( 0;3)

[ok]


> Wie aber kann ich denn nun aus diesen Informationen die
> Asymptoten ableiten?

Aus diesen Punkten oben? Eigentlich gar nicht.

Führe hier folgende Grenzwertbetrachtungen für [mm] $f_t(x) [/mm] \ = \ [mm] 4*e^{t*x}-e^{2t*x} [/mm] \ = \ [mm] e^{t*x}*\left( \ 4-e^{t*x} \ \right)$ [/mm] durch:

[mm] $\limes_{x\rightarrow -\infty}f_t(x) [/mm] \ = \ ...$

[mm] $\limes_{x\rightarrow +\infty}f_t(x) [/mm] \ = \ ...$


Gruß
Loddar

Bezug
                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Do 02.01.2014
Autor: begker1

Naja, dann würde für lim gegen + [mm] \infty [/mm] =  unendlich werden und lim gegen - [mm] \infinity [/mm] gegen 0 streben.
Also ist die Asymptote bei y=0, oder?

Bezug
                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Do 02.01.2014
Autor: Diophant

Hallo,

> Naja, dann würde für lim gegen + [mm]\infty[/mm] = unendlich
> werden und lim gegen - [mm]\infinity[/mm] gegen 0 streben.

Fast. Es sind

[mm] \lim_{x\rightarrow\infty}f_t(x)=-\infty [/mm]

sowie

[mm] \lim_{x\rightarrow-\infty}f_t(x)=0 [/mm]

> Also ist die Asymptote bei y=0, oder?

Das ist unglücklich formuliert. Besser: die Gerade mit y=0 (besser bekannt als x-Achse ;-) ) ist Asymptote an jedes Schaubild der Schar [mm] f_t. [/mm]

Gruß, Diophant
 

Bezug
                                
Bezug
Funktionsschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Do 02.01.2014
Autor: begker1

Ja, stimmt. Ich glaub jetzt hab ichs verstanden. Ich dank dir sehr!!
Beste Grüße und gesundes neues Jahr!!
Jan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]