www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenFunktionsschar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Funktionsschar
Funktionsschar < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 12.02.2007
Autor: ani

Aufgabe
a) Untersuche die Funktionsschar [mm] f_k [/mm] mit [mm] $f_k(x)=\bruch{x^2 - k}{x-1}$ [/mm] . Zeichne die
Funktionsgraphen für k= 1/4, k=1 und k=4.

b) Bestimme den Inhalt der Fläche, die der Graph von fk für k=1/4 mit der 1. Achse einschließt

c)Warum ist die Stammfunktion für 1/x -1 ln von x-1?



Hallo,
Wir sollen bei dieser Rechnung vor allem auf die Fälle achten

Die Lösungen, die ich bis jetzt für a habe:
Polgerade bei 1  
Sie ist punktsymetrisch  
für + unendlich ist x + unendlich für - unendlich ist x - unendlch
f´(x)= [mm] \bruch{x^2 -2x +k}{(x-1)^2} [/mm]
f´´(x)= [mm] \bruch{2 -2k}{(x-3)^3} [/mm]
Extremstellen:
falls k<0= x= 1+ Wurzel aus(1-k) und 1- Wurzel aus (1-k)
falls k=0 x=2 und x=0 TP(2/4) HP(-2/(-4/3))
falls k>0 x= 1+ Wurzel aus (1-k) und 1-Wurzel aus (1-k)
falls k>1 keine lösung
Wendestellen: Nur im Falle das k=1 ist kann die Gleichung gleich 0 gesetzt
werden

Danke


        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 12.02.2007
Autor: leduart

Hallo
Du hast fast alles richtig,
Nur fehlen die Nullstellen und der Pol bei x=1,(Funktion bei x=1 nicht definiert, ABER für k=1 kannst du kürzen, und hast dann ne Grade, also sicher KEINEN WENDEPKT .
Also k=1 gesondert untersuchen.
Gruss leduart

Bezug
                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 12.02.2007
Autor: ani

Hallo, Danke für deine Hilfe

Ich habe noch eine Frage: Sind die Nullstellen [mm] (\wurzel{k} [/mm] / [mm] \bruch{k-4}{\wurzel{k} -1} [/mm] und [mm] (\wurzel{k} [/mm] / [mm] \bruch{k-4}{-\wurzel{k} -1} [/mm] ?

Grüße Ani

Bezug
                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mo 12.02.2007
Autor: Yuma

Hallo Ani,

auch bei den Nullstellen musst du zwei Fälle unterscheiden!

Du berechnest zuerst die Nullstellen des Zählers und stellst sicher, dass der Nenner nicht auch Null wird. Du merkst sofort, dass der Fall $k=1$ Probleme macht!

Im Fall $k=1$ kannst du die Funktion [mm] $f_1(x)=\frac{x^2-1}{x-1}$ [/mm] noch vereinfachen (binomische Formel oder "notfalls" Polynomdivision!) und sofort die Nullstelle angeben.

Frag ' bitte nochmal nach, wenn dir etwas unklar geblieben ist, ok? :-)

MFG,
Yuma

EDIT:
Leduarts Antwort hat mich darauf gebracht, dass ich einen ganz wichtigen Satz vergessen habe:
Nein, deine Nullstellen sind nicht richtig!
;-)

Bezug
                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Mo 12.02.2007
Autor: leduart

Hallo
> Hallo, Danke für deine Hilfe
>  
> Ich habe noch eine Frage: Sind die Nullstellen [mm](\wurzel{k}[/mm]
> / [mm]\bruch{k-4}{\wurzel{k} -1}[/mm] und [mm](\wurzel{k}[/mm] /
> [mm]\bruch{k-4}{-\wurzel{k} -1}[/mm] ?

Nullstellen heisst doch f=0, was sollen da die Werte
[mm]\bruch{k-4}{\wurzel{k} -1}[/mm]  das versteh ich gar nicht!
ausser fuer k=1 sind die NSt. [mm] (+\wurzel{k},0) [/mm] und [mm] (-\wurzel{k},0) [/mm]
fuer k=1 nur eine!
Gruss leduart

Bezug
                                
Bezug
Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Mo 12.02.2007
Autor: ani

Hallo,
Natürlich sind die Nullstellen [mm] \wurzel{k}und [/mm] 0 [mm] und\wurzel{-k} [/mm] und 0
dummer Fehler

Ich habe noch eine Frage bezüglich der Teilaufgabe b Ist der Flächeninhalt 0,176
Meine Stammfunktion war
F(x)= [mm] \bruch{1}{2}x^2+x+\bruch{3}{4}*ln(x-1) [/mm]
Grenzen 0.5 und -0.5

Bezug
                                        
Bezug
Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 12.02.2007
Autor: Yuma

Hallo Ani,

erstmal nur zu den Nullstellen:

> Natürlich sind die Nullstellen [mm]\wurzel{k}und[/mm] 0
> [mm]und\wurzel{-k}[/mm] und 0
> dummer Fehler

Du meinst [mm] $\sqrt{k}$ [/mm] und [mm] $-\sqrt{k}$, [/mm] oder?

Das ist aber nur im Fall [mm] $k\not=1$ [/mm] richtig,
im Fall $k=1$ ist [mm] $\sqrt{k}$ [/mm] KEINE Nullstelle!

MFG,
Yuma

Bezug
                                        
Bezug
Funktionsschar: zur Integration
Status: (Antwort) fertig Status 
Datum: 20:56 Mo 12.02.2007
Autor: Yuma

Hallo Ani,

> Ich habe noch eine Frage bezüglich der Teilaufgabe b Ist
> der Flächeninhalt 0,176
> Meine Stammfunktion war
> F(x)= [mm]\bruch{1}{2}x^2+x+\bruch{3}{4}*ln(x-1)[/mm]
> Grenzen 0.5 und -0.5

Alles richtig! [ok]

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]