www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenFunktionsscharen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Funktionsscharen
Funktionsscharen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsscharen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:29 Mi 14.01.2009
Autor: missjanine

Aufgabe
[mm] f(x)=\bruch{1000x}{3+0,01*x^2} [/mm]
[mm] fk(x)=\bruch{1000x}{3+k*x^2} [/mm] und k aus R
[mm] fk´(x)=\bruch{1000(3-k*x^2)}{(3+k*x^2)^2} [/mm]

Wie kann ich allgemein in Abhängigkeit von k die Punkte der Graphen von fk mit waagerechten Tangenten berechnen und beweisen, dass alle Punkte der Graphen von fk mit waagerechten Tangenten auf einer Ursprungsgeraden liegen?

        
Bezug
Funktionsscharen: Zur Aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Mi 14.01.2009
Autor: missjanine

Die oben angegeben zweite Funktionsschar von fk ist die 1. Ableitung von fk!

Bezug
                
Bezug
Funktionsscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mi 14.01.2009
Autor: meep

dann setz die erste ableitung mal 0 und lös die nach x auf

Bezug
                        
Bezug
Funktionsscharen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mi 14.01.2009
Autor: missjanine

dann erhalte ich [mm] x=\wurzel{3/k} [/mm] und [mm] x=-\wurzel{3/k} [/mm]

Bezug
                                
Bezug
Funktionsscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Mi 14.01.2009
Autor: meep

alles klar, die 2 werte setzt du nun in deine stammfunktion ein und dann erhälst du ja die dazugehörigen y-werte. mach das am besten mal gleich.

Bezug
                                        
Bezug
Funktionsscharen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mi 14.01.2009
Autor: missjanine

[mm] y=\bruch{500}{3}\wurzel{3/k} [/mm]
[mm] y=-\bruch{500}{3}\wurzel{3/k} [/mm]

Bezug
                                                
Bezug
Funktionsscharen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:51 Mi 14.01.2009
Autor: reverend

Ja, und nun?

Du weißt jetzt, dass der Hochpunkt bei [mm] (\wurzel{\bruch{3}{k}},\bruch{500}{3}\wurzel{\bruch{3}{k}}) [/mm] und der Tiefpunkt bei [mm] (-\wurzel{\bruch{3}{k}},-\bruch{500}{3}\wurzel{\bruch{3}{k}}) [/mm] liegt.

Du solltest zeigen, dass alle Punkte mit waagerechter Tangente auf einer Ursprungsgeraden liegen.

Wie machst Du das nun?

Tipp: setze [mm] u=\wurzel{\bruch{3}{k}} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]