www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFunktionsuntersuchung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Funktionsuntersuchung
Funktionsuntersuchung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 22.05.2006
Autor: Icyangel

Aufgabe
Gegeben ist die Funktion f mit [mm] f(x)=1-\bruch{1}{\wurzel{x}} [/mm]

a) In welchem Punkt des Schaubildes gibt es eine Tangente, die durch den Ursprung geht?
b) Untersuche, ob die Fläche zwischen dem Schaubild und der Asymptote für x größer/gleich 1 einen endlichen Inhalt hat.

Hi!

Ich sitze leider schon 2 Stunden an dieser Aufgabe und komme nicht weiter!

Kann mir jmd bitte einen Lösungshinweis geben ;( Bin dankbar für jeden Tipp!

Lg

verena

        
Bezug
Funktionsuntersuchung: Aufgabe a.) (edit.)
Status: (Antwort) fertig Status 
Datum: 18:14 Mo 22.05.2006
Autor: Loddar

Hallo Verena!


Gesucht ist eine Ursprungsgerade, die die genannte Funktion $f(x) \ = \ [mm] 1-\bruch{1}{\wurzel{x}} [/mm] \ = \ [mm] 1-x^{-\bruch{1}{2}}$ [/mm] an einem Berührpunkt $B \ [mm] \left( \ b \ | \ f(b) \ \right)$ [/mm] berühren soll.


Das heißt, diese Ursprungsgerade hat die Form $y \ = \ [mm] m_t*x$ [/mm] .

Dabei muss nun auch die Steigung [mm] $m_t$ [/mm]  dieser Geraden der Steigung der Kurve an der Berührstelle $x \ = \ b$ entsprechen.

Es gilt also: [mm] $m_t [/mm] \ = \ f'(b) \ = \ [mm] \red{-}\left(-\bruch{1}{2}\right)*b^{-\bruch{3}{2}} [/mm] \ = \ [mm] \red{+}\bruch{1}{2*\wurzel{b^3}}$ [/mm]


Ebenso müssen am Berührpunkt $B_$ die Funktionswerte übereinstimmen:

$y(b) \ = \ [mm] m_t*b [/mm] \ = \ f(b) \ = \ [mm] 1-\bruch{1}{\wurzel{b}}$ [/mm]


Setzen wir nun den Wert der Steigung [mm] $m_t$ [/mm] in diese Gleichung ein, erhalten wir die Bestimmungsgleichung für die Berührstelle $b_$ :

[mm] $\bruch{1}{2*\wurzel{b^3}}*b [/mm] \ = \ [mm] 1-\bruch{1}{\wurzel{b}}$ [/mm]

Edit: Vorzeichen bei Ableitung korrigiert. Loddar


Nun nach $b \ = \ ...$ umstellen


Gruß
Loddar


Bezug
        
Bezug
Funktionsuntersuchung: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 22.05.2006
Autor: Loddar

Hallo Verena!


Zunächst einmal müssen wir uns die Asymptote ermitteln.

Der Ausdruck [mm] $\bruch{1}{\wurzel{x}}$ [/mm] geht für sehr große x-Werte gegen $0_$ .

Damit verbleibt für die Asymptote der Funktion: $a(x) \ = \ 1-0 \ = \ 1$


Hier ist dann die gesuchte Fläche skizziert:

[Dateianhang nicht öffentlich]


Für den Flächeninhalt zwischen zwei Kurven gilt dann:

$A \ = \ [mm] \integral_a^b{a(x)-f(x) \ dx}$ [/mm]


In unserem Falle liegt ein sogenanntes uneigentliches Integral vor, da wir als obere Integrationsgrenze den "Wert" [mm] $+\infty$ [/mm] haben:

$A \ = \ [mm] \integral_{1}^{\infty}{1-\left(1-\bruch{1}{\wurzel{x}}\right) \ dx} [/mm] \ = \ [mm] \integral_{1}^{\infty}{\bruch{1}{\wurzel{x}} \ dx} [/mm] \ = \ [mm] \limes_{b\rightarrow\infty}\integral_{1}^{b}{x^{-\bruch{1}{2}} \ dx} [/mm] \ = \ ...$


Kommst Du nun alleine weiter?


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Funktionsuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Mo 22.05.2006
Autor: Icyangel

danke für deine antwort:) ich versuchs jetzt nochmal mit deinen tipps zu lösen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]