Funktionsuntersuchung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:46 So 25.06.2006 | Autor: | Fou |
Aufgabe | Gegeben ist die Funktion f(x) = 2*sin(x) / x
a) Geben sie den größtmöglichen Definitionsbereich von f an
b) Untersuchen Sie das Verhalten von f an der Definitionslücke. Ist f dort stetig forsetzbar? Geben sie ggf. eine stetige Fortsetzung von f an
c) Untersuchen Sie f auf Symmetrie sowie das Verhalten von f für x--> [mm] \pm [/mm] unendlich
d) Zeichnen Sie den Graphen von f für - [mm] \pi \le [/mm] x [mm] \le \pi
[/mm]
e) Ermitteln Sie die Ableitungen von f´ und f´´
f) Bestimmen Sie die Lage der kleinsten positiven Extremalstelle näherungsweise mit Hilfe der Skizze, der Ableitungsfunktion und des Taschenrechners sowie die Art des Extremums
g) Bestimmen Sie die Gleichung der Tangente an den Graphen von f an der Stelle x = pi/2 |
Hallo, habe mehrere Fragen :)
zu a) a ist eigentlich klar, der Definitionsbereich sollte R / 0 sein
e) Habe Probleme bei der 2. Ableitung meine erste ist:
2*sin(2x)*(2x-1)
_____________
[mm] x^2
[/mm]
Irgendwie ist es komisch ein Produkt mit der Quotientenregel abzuleiten oder kann ich das noch vereinfachen?
b) Ich komme auf kein Ergebnis wenn ich den Grenzwert von lim x->0 der Funktion bilde, da 0/0 ein unbestimmter Ausdruck ist.
Wenn ich hospital anwende bekomme ich -1 / 0 raus, was glaube ich nicht viel besser ist, oder ist der Grenzwert dann unendlich?
c) Krieg ich irgendwie nicht hin, da Sinus ja periodisch ist demnach kann ich doch gar nich Sinus gegen unendlich streben lassen oder irre ich mich???
f) Eine Extremstelle wär kein Problem :D aber die kleinste? habe leider keine Ahnung wie ich das machen soll :(
g) Hab ich :)
Danke im Voraus für Hilfe :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:36 So 25.06.2006 | Autor: | Fou |
Danke für die Hilfe, habe jetzt alles außer f
Also mein Problem ist, dass die Funktion unendlich viele Extremstellen haben und die ja gegen unendlich immer kleiner werden, aber da es halt unendlich sind frage ihc mich, wie ich da die kleinste extremalstelle rausbekommen soll, weil es ja immer kleinere gibt unaufhörbar
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:29 Mo 26.06.2006 | Autor: | leduart |
Hallo Fou
Du sollst nicht die niedrigste Maximum finden, sondern die kleinste "Stelle", also den kleinsten x-Wert bei dem ein Max auftritt. bie sin wär das [mm] x=\pi/2 [/mm] und in der Nähe liegt der hier auch.
Gruss leduart
|
|
|
|