Galois-Gruppe von ZFK < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen,
in vielen Büchern wie gefolgert, dass die Galois-Gruppe [mm] Gal(\IQ(\zeta):\IQ) [/mm] zur multiplikativen Gruppe [mm] (\IZ/n\IZ) [/mm] isomorph ist.
Leider finde ich in keinem Buch einen Beweis dafür und selbst komm ich leider auch nicht auf einen grünen Zweig...
Vielleicht kann mir jemand einen Beweis/Beweisidee liefern?!?
Danke!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:26 Mi 23.06.2010 | Autor: | felixf |
Moin!
> Hallo zusammen,
> in vielen Büchern wie gefolgert, dass die Galois-Gruppe
> [mm]Gal(\IQ(\zeta):\IQ)[/mm] zur multiplikativen Gruppe [mm](\IZ/n\IZ)[/mm]
> isomorph ist.
Hier ist [mm] $\zeta$ [/mm] eine $n$-te primitive Einheitswurzel.
> Leider finde ich in keinem Buch einen Beweis dafür und
> selbst komm ich leider auch nicht auf einen grünen
> Zweig...
> Vielleicht kann mir jemand einen Beweis/Beweisidee
> liefern?!?
Das koennte dir weiterhelfen:
Nun, das Minimalpolynom von [mm] $\zeta$ [/mm] hat genau die $n$-ten primitiven Einheitswurzeln als Nullstellen. Und diese haben in der (zyklischen) Gruppe der $n$-ten Einheitswurzeln die gleiche Stellung wie die Einheiten in [mm] $\IZ/n\IZ$.
[/mm]
LG Felix
|
|
|
|
|
Aber warum nur zur multiplikativen Gruppe?
Was heißt "gleiche Stellung"?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:07 Do 24.06.2010 | Autor: | felixf |
Hallo!
> Aber warum nur zur multiplikativen Gruppe?
> Was heißt "gleiche Stellung"?
Wenn [mm] $\mu_n$ [/mm] die Gruppe der $n$-ten Einheitswurzeln (in [mm] $\IC$) [/mm] ist, dann hast du einen Isomorphismus [mm] $\IZ/n\IZ \to \mu_n$. [/mm] Die primitiven Einheitswurzeln sind gerade die von Ordnung $n$, womit sie in [mm] $\IZ/n\IZ$ [/mm] (aufgefasst als additive Gruppe!) den Elementen der Ordnung $n$ entsprechen -- und das sind gerade die Restklassen, welche zu $n$ teilerfremd sind. Diese wiederum sind gerade die Einheiten des Ringes [mm] $\IZ/n\IZ$. [/mm] Der Isomorphismus [mm] $\IZ/n\IZ \to \mu_n$ [/mm] ist uebrigens durch $m + [mm] n\IZ \mapsto \zeta^m$ [/mm] gegeben, wobei [mm] $\zeta$ [/mm] eine fest gewaehlte $n$-te Einheitswurzel ist.
Damit hast du eine Korrespondenz zwischen den Einheiten von [mm] $\IZ/n\IZ$ [/mm] und den primitiven $n$-ten Einheitswurzeln, welche gleichzeitig alle Nullstellen des Minimalpolynoms $f$ von [mm] $\zeta$ [/mm] sind. Nennen wir die Menge der primitiven $n$-ten Einheitswurzeln $N$. Dann ist $N = [mm] \{ \zeta^m \mid m + n\IZ \in (\IZ/n\IZ)^\ast \}$, [/mm] du hast also eine Bijektion [mm] $(\IZ/n\IZ)^\ast \to [/mm] N$, $m + [mm] n\IZ \mapsto \zeta^m$.
[/mm]
Dann hast du eine Bijektion [mm] $\Psi [/mm] : N [mm] \to \Aut(\IQ(\zeta) [/mm] / [mm] \IQ)$, [/mm] wobei [mm] $\zeta' \in [/mm] N$ zu eiem Automorphismus [mm] $\varphi [/mm] : [mm] \IQ(\zeta) \to \IQ(\zeta)$ [/mm] mit [mm] $\varphi(\zeta) [/mm] = [mm] \zeta'$ [/mm] korrespondiert.
Jetzt ueberlege dir, dass die Abbildung [mm] $(\IZ/n\IZ)^\ast \to \Aut(\IQ(\zeta) [/mm] / [mm] \IQ)$, [/mm] $m + [mm] n\IZ \mapsto \Psi(\zeta^m)$ [/mm] nicht nur eine Bijektion, sondern auch ein Homomorphismus von Gruppen ist.
LG Felix
|
|
|
|